Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

3121 что за двигатель

Двигатель H4M разработан и запущен в производство в 2004 году. Предназначался для оснащения популярных моделей Renault и Nissan. В последствии получил более широкое распространение. Удачное конструкторское решение сделало этот мотор не только удачным, но и востребованным. Его выпуск производится по настоящее время.

Силовой агрегат H4M представляет собой четырехцилиндровый рядный бензиновый двигатель объемом 1,6 литра, мощностью 114 л. с и крутящим моментом 153 Нм.

Двигатель устанавливался на автомобили Renault:

На автомобили Nissan:

С 2019 года его можно встретить под капотом автомобилей Лада (ВАЗ):

  • Веста (седан, Кросс, СВ2181);
  • Х-рей (хэтчбек, Кросс).

Установка производится по сегодняшний день.

Блок цилиндров изготовлен из алюминиевого сплава. Основная причина отказа от чугунного блока – улучшение динамики автомобиля и снижение общего веса как ДВС, так и авто в целом. Внутри блока запрессованы «мокрые» гильзы.

Для снижения внутреннего трения цилиндры выполнены со смещением.

Поршни стандартные с двумя компрессионными и одним маслосъемным кольцами.

Шатуны литые, облегченные.

Шейки распределительных и коленчатого валов отшлифованы по специальной технологии. В результате значительно снижена сила трения в сопряженных с ними узлах.

ГБЦ так же алюминиевая. В ней располагаются два распредвала и 16 клапанов (DOHC). Гидрокомпенсаторы не предусмотрены, поэтому тепловой зазор приходится регулировать вручную, путем подбора толкателей.

Для справки: существует 26 типоразмеров стаканов клапанов с шагом 0,02 мм. Поэтому подбор нужных толкателей без специального оборудования практически не возможен. Регулировка теплового зазора клапанов осуществляется в автосервисах. Периодичность от 80 до 100 тыс. км.

Привод ГРМ цепной. По заявлению производителя ресурс цепи составляет не менее 150 тыс. км пробега. По имеющимся сведениям, при аккуратной эксплуатации мотора ее ресурс превышал 250 тыс. км.

Обратите внимание! При установке ГБО периодичность регулировки клапанов сокращается, а срок их службы заметно снижается. Это связано с ухудшением условий охлаждения клапанов.

Агрегаты навесного оборудования (помпа, генератор, компрессор ГУР) приводятся во вращение ремнем.

На впускном распредвале установлен фазовращатель. Автоматически регулируя моменты открытия-закрытия клапанов, он играет существенную роль как в изменении тягово-скоростных характеристиках ДВС, так и в экономии топлива.

Система питания топливом так же имеет некоторые инновационные решения. Так, каждый цилиндр оснащен двумя форсунками. Такое нововведение позволило несколько увеличить мощность мотора, снизить обороты холостого хода, что в свою очередь привело к снижению расхода топлива и одновременно способствовало повышению экологических норм Евростандарта (снижена токсичность выброса отработанных газов).

Значительно усовершенствована электрическая часть двигателя. Надежные высоковольтные катушки, свечи зажигания провода теперь автовладельцам не доставляют хлопот. Отмечается добротность генератора, который поставляется японской компанией Mitsubishi Electric.

Слабые места двигателя ВАЗ 2130

Водяной насос (помпа). После того, как вы проедете 2000 км, вы начнете замечать шум со стороны помпы при работе двигателя. К сожалению, у данного ДВС наблюдается быстрый износ подшипника водяного насоса. В итоге, насос выходит из строя, соответственно циркуляция охлаждающей жидкости не происходит, что чревато для мотора перегревом, клином, то есть выходом из строя. Чтобы избежать данных проблем, желательно менять помпу так же часто, как и ремень ГРМ. Можете делать это одновременно. Стук и скрежет говорит о подшипнике помпы.

Сальники двигателя, МКПП и раздаточной коробки. В двигателе 2130 используются сальники низкого качества. Поэтому желательно менять их гораздо чаще, чем это указано в руководстве по эксплуатации.

Генератор . Даже после покупки нового автомобиля у владельцев происходило неприятное событие — под капотом начинал гудеть и шуметь двигатель. К сожалению, все классические двигатели ВАЗ имеют одну и ту же проблему — разрушение подшипника генератора. В двигателе не предусмотрена конструкция регулировки натяжения ремня. Поэтому уже через 4000-10000 км после ремонта скорее всего вы снова получите сгоревший генератор.

Стартер. Еще одна извечная проблема — автомобиль заводится достаточно проблематично, а порой вообще не заводится. Связано это с низким ресурсом работы без ремонта. Для исправления проблемы достаточно увеличить ресурс узла. Можно поставить реле на стартер. Так замок зажигания будет жить долго.

Коробка передач. На большом пробеге вашего авто появляется новый дефект — вылет пятой передачи. На четвертой передаче на скорости 80+ появляется гул, когда педаль газа находится в средней фазе между полным отпусканием педали и началом подачи нагрузки. Причин может быть много, но основные: износ или поломка блокирующего кольца синхронизатора;износ вилки переключения;ослабление затяжки гайки хвостовика вторичного вала; и другое.

Термостат. Эта проблема появляется достаточно часто. Термостат перестает обеспечивать тепловой режим охлаждающей жидкости системы охлаждения двигателя. Проблема отказа термостата кроется внутри него самого. Если вы хотите проверить, исправно ли работает термостат, вам нужно запустить двигатель, и положить ладонь на нижний шланг. По нему бежит тосол, необходимый для охлаждения ДВС. Если спустя некоторое время шлаг остается холодным, то замену термостата необходимо провести как можно скорее.

Вакуумный усилитель тормозов. Спустя некоторое время после начала эксплуатации водитель сталкивается с проблемой плавающих оборотов, если выжимать педаль тормоза. Также это может сопровождаться шипением. Еще одним признаком проблемы является тугость педали тормоза при нажиме. Обычно из строя выходят резинотехнические изделия и хомуты в соединениях. Проблема решается их заменой.

Поршневые пальцы и шатунные подшипники также очень часто дают сбой. Если под капотом вы слышите металлический стук, то проблема наверняка в них. Срочно нужно ехать в сервис. Доехать туда можно самостоятельно на небольшой скорости.

Коренные подшипники также являются слабым местом двигателя.При их износе наблюдается стук в нижней части двигателя и падение давления масла. Об этом говорит специальный индикатор на приборной панели. В таком случае, работу двигателя необходимо прекратить и ехать для ремонта в сервис при помощи буксира.

Цепь ГРМ с механизмом натяжения слабые места и расходные элементы, подлежащие одновременной замене через 80 000 км, то есть при капитальном ремонте после окончания ресурса. Скрип в двигателе ВАЗ 2130 говорит о проблеме с успокоителем и натяжением цепи ГРМ.

3 Гильотина НА3121 – характеристики и описание ножниц

Производится установка с параметрами, которые отвечают требованиям Технических условий 1983 года 2–041–1068. Используется данный станок, выполненный с верхним вариантом привода, чаще всего на заготовительных участках предприятий, занимающихся машиностроением.

Ножевая балка получает вращение от двигателя мощностью 17 кВт. Передается оно на эксцентриковый вал через тормозную муфту, передачу (клиноременную), редуктор (имеет цилиндрическую форму). После этого вращение поступает на кривошипно-шатунное устройство и только затем на балку.

Стол агрегата с нижними ножами, присоединяемыми к нему посредством винтов, опирается на стойки. Последние между собой скреплены гнутыми швеллерами, образуя станину. Зазор между нижними и верхними ножами регулируется передвижением стола по горизонтали.

Читать еще:  Все детали двигателя схема

Ножевая балка с ножами (верхними) представляет собой усиленную ребрами жесткости Г-образную сварную конструкцию. Боковые и передний упоры присоединены к столу. Задний упор монтируется на задней части ножевой балки, устанавливают его винтовым механизмом.

Пневматическая тормозная муфта фрикционного вида является жесткоблокированной, находится она на приводном валу (на левом его окончании). Уменьшение динамических нагрузок и компенсацию веса балки (ножевой) обеспечивают уравновешиватели (пневматические).

На подмоторной плите станка расположен электрический двигатель, который соединяется со станиной шарнирно. Тормоз насажен на коленвал (на правый его конец). Он обеспечивает периодичность приостановки станка за счет того, что шкив установлен к оси коленчатого вала эксцентрически. Торможение возможно в тот момент, когда балка (ножевая) достигает верхнего своего положения (силы инерции нивелируют явление ее забегания).

Паспорт на ножницы НА3121 дает описание и других составляющих частей и механизмов гильотины:

  • электромагнитное управление: магнит начинает функционировать по команде оператора станка (нажатие на педаль либо кнопку на пульте управления), возможна и автоматическая его работа.
  • муфта включения: расположена в ступице колеса (зубчатого) на коленвале, состоит из запорных и рабочих шпонок, двух неподвижных втулок и пружин;
  • задний упор: необходим для выполнения резки листов в поперечном направлении, в его конструкции предусмотрены цилиндрические по форме рейки, передвижение коих позволяет устанавливать линию упора на требуемую дистанцию от кромки режущего инструмента;
  • ограждение: необходимо для защиты вращающих частей гильотины, представляет собой четыре кожуха из стали толщиной 1,6 мм, они закрывают тормозной механизм агрегата, маховик передачи, шкив двигателя и приводные валы.

Различия двигателей

Основными отличиями двигателей устанавливаемых в Ладу 4Х4, был объем двигателя, с годами его увеличивали, а так же перешли с карбюратора на инжектор. Переход на инжектор позволил увеличить мощность двигателя при этом уменьшить расход топлива, который, кстати, по сравнению с «Жигулями» у Нивы немаленький.

Со временем объем двигателя увеличили с 1,6 литра до 1,7, а позже и вовсе до 1,8 литра, что положительно сказывалась на ездовых характеристиках автомобиля.

Двигатель ВАЗ 21214-1000260. Характеристика двигателя ВАЗ 21214.

Двигатель четырехтактный, с распределенным впрыском топлива, рядный, с верхним расположением распределительного вала. Система охлаждения двигателя — жидкостная, закрытого типа, с принудительной циркуляцией жидкости. Двигатель имеет комбинированную систему смазки: под давлением и разбрызгиванием.

Особенности двигателя.

Двигатель ВАЗ 21214 может применяться для установки на автомобили ВАЗ «Нива»: 2121, 21213, 21214, 2131; «Надежда» 2120 и их модификациях.

Базой для нового агрегата стала модель 21213. Многие конструктивные элементы двигателя 21214 незначительно отличаются от соответствующих элементов базовой модели. Внесение большинства изменений в конструкцию связано с переходом на систему впрыска, введением элементов обеспечивающих выполнение экологических норм Евро 2 (3) и использованием гидроопор рычагов клапанов. Установка на автомобиле ГУРа потребовала дополнительной доработки элементов двигателя.

В своем развитии двигатель претерпел несколько модификаций. Первые модели оснащались централизованным впрыском. Модель 21214-20 имела уже попарно-параллельный впрыск топлива, контроллер Bosch MP7.0 и соответствовала требованиям Евро 2. Переход на Евро 3 и использование гидроопор рычагов клапанов фирмы INA потребовал дальнейшей доработки двигателя. На данный момент серийно выпускаются двигатели следующих модификаций.

Модификации

21214-41 — модификация с насосом гур, со стальным сварным коллектором,гидроопоры ЯЗТА, Евро 3.

21214-34 — модификация без насоса гур, с чугунным коллектором,гидроопоры INA, Евро 3.

21214-33 — модификация с насосом гур, с чугунным коллектором,гидроопоры INA, Евро 3.

21214-32 — модификация с насосом гур, с чугунным коллектором,гидроопоры INA, топливные трубки под быстрые разъемы,маховик под сцепление 215мм,Евро 3.

21214-31 — модификация с насосом гур, со стальным сварным коллектором,гидроопоры INA,Евро 4.

21214-30 — модификация без насоса гур, со стальным сварным коллектором,гидроопоры INA,Евро 4.

Геометрические параметры блока цилиндров 21214 совпадают с блоком 21213. Изменилась форма передней крышки двигателя – потребовалось место для установки датчика положения коленчатого вала. Дополнительно на блоке имеется отверстие под крепление кронштейна ( 21214-3407140)для установки насоса ГУР (смотреть «Блок цилиндров»).

Шатунно-поршневая осталась без изменений от двигателя 21213. Используемый коленчатый вал 21213-1005015, обеспечивает ход поршня – 80мм. (радиус кривошипа – 40мм.). Шкив коленчатого вала дополнен задающим зубчатым диском. Зубцы диска позволяют формировать сигнал для датчика положения коленчатого вала. На последних моделях двигателя устанавливается демпфирующий шкив (21214-1005058-10). Конструкция демпфера позволяет снизить крутильные колебания на валу и уменьшить шумность двигателя. Маховик модели 21213, с диаметром рабочей поверхности 200 мм.

Значительные изменения потребовались для головки. Новая головка цилиндров имеет индекс 21214-1003011-30(36). За основу принята конструкция головки 21213. В головке цилиндров(под Евро 3), со стороны звездочки, предусмотрены дополнительные отверстия для датчика фаз и его крепления. На головке появились отверстия под шпильки для крепления ресивера.

Использование гидроопор потребовало изменений в конструкции головки. Для устранения зазоров в клапанном механизме, вместо регулировочных болтов были установлены гидроопоры рычагов клапанов. К каждой гидроопоре подается масло под давлением, которое подводится по отдельному трубопроводу. Головки имеют приливы и дополнительные крепежные отверстия для монтажа элементов гидроопоры. Головки, комплектовавшиеся отечественными гидроопорами имеют индекс 21214-1003015. Отличаются они диаметром резьбовых отверстий под гидроопоры, которые составляют М18/1,5. Внутри колодцев под гидроопоры отсутствуют дренажные отверстия. Головка блока 21214-1003015-30 рассчитана на установку гидроопор фирмы INA. Отверстия в таких головках с резьбой М24х1,5, а внутри колодцев имеются дренажные отверстия. Обозначение новой головки выполнено в литье.

Конструктивно различаются рампы подвода масла к опорам. Новая рампа 21214-1007180-30 выполнена из нержавеющей стали и невзаимозаменяемая с вариантом 21214-1007180.

Незначительно изменился рычаг клапана. По сравнению со старым рычагом мод. 2101-1007116, в новом уменьшена радиусная опорная площадка(11мм) контактирующая с кулачком распредвала. Код нового рычага 21214-1007116-30. Отличить его можно по дополнительной (уже второй) проточке на внешней стороне рычага со стороны гидроопоры. Новый рычаг 21214-1007116-30 может без ущерба устанавливаться вместо старого.

Значительные изменения затронули привод распределительного вала. Двухрядная цепь заменена на однорядную втулочно-роликовую цепь (21214-1006040-03). Поэтому на двигателе все приводные звездочки заменены на однорядные от двигателя 2123. Звездочка масляного насоса имеет меньший размер (30 зубьев). Это позволило повысить производительность масляного насоса и обеспечить надежную работу гидронатяжителя и гидротолкателей. Применена пружинно-гидравлическая система натяжения цепи. Подвод масла к гидронатяжителю осуществляется по специальной трубке. В механизме привода используются новые успокоитель цепи и башмак натяжителя. Обе детали изготовлены с использованием износостойкого пластика. Башмак натяжителя 21214 длиннее башмака мод. 21213.

На двигателе применен оригинальный распределительный вал 21214-1006010. Применение гидроопор повлекло изменение профиля кулачков распределительного вала. Он не взаимозаменяем с валом 21213.

Читать еще:  Электронная диагностика двигателя что это

Генератор

На двигателе применен генератор на 80А. По своим характеристикам он не отличается от генератора модели 2112. На генераторе установлен новый шкив с наружным диаметром 80,0мм., поэтому генератор получил новый индекс 21214. Для привода применяется ремень 2107-1308020(длина — 944мм).

Двигатель может комплектоваться чугунным выпускным коллектором или сварным коллектором из нержавеющей стали (для комплектации Евро-3). Переход на сварные конструкции позволяет снизить массу коллектора. Это способствует ускоренному прогреву нейтрализатора и создание оптимальных температурных условий для его нормальной работы. Выпускной коллектор для инжекторных модификаций имеет отверстие для установки датчика. На двигатель может устанавливаться коллектор модели 2123.

В системе питания устанавливается ресивер от модели 2123.

Топливная рампа 2123-1144010-11. Форсунка топливная «SIEMENS» VAZ20734 (желтые). На старых модификациях могут устанавливаться форсунки «BOSCH» 0280 158 110.

Модуль зажигания заимствован у ВАЗ-2112. Управление двигателем осуществляется контроллером BOSCH MP 7.9.7. или ЯНВАРЬ 7.2 Для модификации под Евро-2 применяется система попарно-параллельного впрыска топлива. Для моторов под Евро-3 применяется система фазированного впрыска топлива. Фазированный впрыск позволяет осуществлять индивидуальную подачу топлива на каждый цилиндр и повысить точность дозирования топлива.

Под новый проект модернизации автомобиля LADA 4×4 21214M, в двигатель были внесены некоторые изменения. Двигатель стал комплектоваться маховиком 2123 (с диаметром рабочей поверхности 215 мм).

В системе охлаждения применены прокладки с эластичным полимерным валиком, исключающим течь. На водяной насос установлен сальник с повышенным ресурсом производства группы Freudenberg (Фройденберг). В топливной системе изменения произошли в конструкции топливных магистралей. Для соединения топливопроводов используются быстроразьемные муфты. Топливный фильтр перемещен из моторного отсека ближе к топливному баку.

двигатели Drive-e (описание и техданные)

Обзор
У новых двигателей Volvo Drive-E много одинаковых частей, таких как коленчатые валы, масляный насос, масляный поддон, генератор и компрессор АС. Другие части похожи, например, блок двигателя и модуль балансировки двигателей.

Вес двигателя
И в дизельных, и в бензиновых двигателях установлены шатуны, отлитые под давлением. Опорная плита двигателя имеет литую стальную подкладку и элементы усиления из модифицированного чугуна. Блоки цилиндров у бензиновых и дизельных двигателей идентичны, за исключением того, что у дизельных двигателей блок цилиндров несколько выше, а литая стальная прокладка мощнее. Использование литья в сочетании с уникальной конструкцией обеспечивает прочность конструкции при небольшом весе. Требуется всего два варианта блока цилиндров, различающихся только диаметром главного (коренного) подшипника. Переход на новые двигатели Drive-E обеспечивает экономию веса 30-50 кг.

Трение в двигателе
Чтобы минимизировать размеры подшипников, коленчатый вал изготовлен из кованой стали. Подгонка опорной плиты к блоку цилиндров упрощена за счет использования новых запатентованных клиньев для регулировки положения. За счет этого удалось улучшить форму главных подшипников (прямолинейность и округлость). Диаметр поршневого пальца минимизируется за счет использования прочной втулки. Различные варианты бензиновых двигателей имеют аналогичные поршни, различия у них только в обработке верхней части поршня — для различных условий сжатия. Двигатели с меньшей мощностью имеет более короткий поршневой палец. Во всех вариантах бензиновых двигателей используются одинаковые поршневые кольца, и во всех вариантах дизельных двигателей используются одинаковые поршневые кольца. Во всех бензиновых и дизельных вариантах поршневые пальцы покрыты алмазоподобным углерода (DLC). Улучшение обработки поверхностей поршней и внутренних поверхностей цилиндров, а также распредвалов на шариковых подшипниках обеспечивают двигателям Drive-E низкое внутреннее трение.

Головка блока цилиндров и система клапанов
Конструкция головки цилиндров базируется на 5- и 6-цилиндровых двигателях Volvo. Основные изменения коснулись снижения трения, увеличения удельной мощности и создания общих интерфейсов для бензиновых и дизельных двигателей. Поскольку головка цилиндров бензинового двигателя должна выдерживать очень высокую тепловую нагрузку, она изготавливается из термически обработанного алюминиевого сплава. Концепция поперечного охлаждения для дизельного двигателя обеспечивает отличное равномерное охлаждение.

Бензиновый ДВС
Бензиновые двигатели имеют проверенную систему электромагнитных клапанов с регулируемыми фазами газораспределения (VVT) и не нуждающимся в обслуживании механическим подъемником с DLC-покрытием. Передний подшипник распредвала — это роликовый подшипник для уменьшения трения. Распределительные валы изготовлены из чугуна, так как это самый лучший материал для скольжения в контакте с подъемником с DLC- покрытием.

Дизель
Дизельный двигатель подвергался термообработке для повышения прочности и предельных температуры материала, и, соответственно, достижения давления в цилиндре 190 бар и большей мощности. Дизельные двигатели имеют встроенные стальные распредвалы для снижения веса и повышения прочности материала.

Поршень отлит из легкого металлического сплава, состоящего в основном из алюминия и кремния. Паз в верхнем кольце защищен кольцевым опорным элементом из литого чугуна, способным выдерживать высокое давление, которому подвергается поршень. На верхней стороне находятся гнезда для впускных и выпускных клапанов. Вес поршня оптимизирован за счет паза над поршневым пальцем и трапециевидной поверхностью, обращенной к шатуну. Вес поршневого пальца также оптимизирован. Максимальное укорочение не только минимизирует вес пальца, но и способствует снижению веса поршня. Для контроля температуры поршня используется регулируемое охлаждение поршня, которое управляется давлением масла. Регулировка интенсивности охлаждения осуществляется на основе модели, откалиброванной для оптимального расхода топлива и низких уровней выбросов.Меры для минимизации трения и износа:• юбка поршня покрыта графитсодержащим полимером, который помогает выдерживать экстремальные нагрузки и снизить уровень поршневого шума при запуске на холоде• скользкая поверхность поршневой пробки имеет алмазоподобное покрытие (DLC)• поверхность гильзы цилиндра подвергалась оптимизированному процессу хонингования на заводе-изготовителе• снижены тангенциальные усилия на поршневых кольцах• поршневые кольца имеют низкофрикционное покрытие
Для того чтобы справляться с повышенными нагрузками и снизить трение, не увеличивая потребление масла, разработан новый комплект колец.1. Верхнее компрессионное кольцо толщиной 1,2 мм изготовлено из азотированной нержавеющей стали. Это кольцо имеет специальное покрытие PVD*, которое снижает трение и обеспечивает хорошую износостойкость.2. Нижнее компрессионное кольцо толщиной 1,2 отлито из серого чугуна и имеет фосфатированную поверхность.3. Масляное кольцо высотой 1,5 мм состоит из двух частей из высокопрочного чугуна с контактными поверхностями и прокладками конической формы. В качестве верхнего компрессионного кольца используется поверхность с покрытием PVD*.*PVD (физическое осаждение из паровой фазы) представляет собой тип покрытия, которое создается в процессе ионизации равномерно вращающегося металла во время подачи реактивного газа. Процесс происходит при очень низком вакуумном давлении и при температуре 400-600°С. В результате образуется тонкое и очень клейкое покрытие.
Коленчатый вал изготовлен из кованой стали с индукционной закалкой поверхностей подшипника. Коленчатый вал опирается на пять подшипников, диаметр коренного подшипника 60 мм. Верхняя половина подшипника на коренном подшипнике 4 также играет роль упорного подшипника или 180-градусного подшипника. Упорные шайбы здесь больше, чем обычно, чтобы поверхность подшипника поддерживалась только одной упорной шайбой. На коленчатом валу между цилиндром 3 и 4 имеется запрессованная шестерня. Эта шестерня приводит в движение уравновешивающие валы. Передний коренной подшипник 1 имеет шестерню для привода масляного насоса. Коленчатый вал имеет гаситель колебаний, помещающийся на переднем ременном шкиве. Вес коленчатого вала составляет 15,2 кг (без шестерни).

Читать еще:  402 двигатель как заделать трещину

Уравновешивающие валы используются для сглаживания собственных вибраций двигателя и приводятся в движение шестерней, закрепленной на коленчатом валу. Оба вала, вращающиеся в противоположных направлениях, находятся в отдельном корпусе в масляном поддоне. Привод уравновешивающих валов осуществляется от коленчатого вала на один из уравновешивающих валов, который, в свою очередь, приводит в движение второй уравновешивающий вал. Шестерня уравновешивающих валов состоит из двух частей. «Узкая» половина (Scissor gear) подпружинена в направлении, противоположном «широкой» половине. Это позволяет избежать шума при устранении зазора зубьев. Эта технология уже используется в зубчатой передаче в двигателе B63x4x. Для обеспечения надлежащего зазора между зубьями корпус уравновешивающих валов еще на заводе отделяется прокладками от блока двигателя.
Новые двигатели Drive-E имеют новый для Volvo тип ременного шкива коленчатого вала. Как и раньше, ременный шкив имеет встроенный гаситель колебаний. Новшеством здесь является то, что он используется в сочетании с разъединителем. Назначение у гасителя колебаний устройства и разъединителя разное; то и другое будет отдельно описано ниже.
В этом 4-тактовом двигателе на один оборот коленчатого вала приходится два импульса зажигания. Таким образом генерируются импульсы с частотой, которая через коленчатый вал передается на наружный шкив коленчатого вала. Разъединитель используется в качестве фильтра, позволяющего изолировать инерцию этих вспомогательных устройств от пульсаций двигателя. Уменьшение неравномерности вращения ременного шкива продлевает срок службы компонентов — приводного ремня, натяжителя и др. Кроме того, уменьшается усилие пружины натяжителя, что способствует снижению расхода топлива.

Зубчатоременная передача для привода распределительных валов обычно размещается на передней стороне двигателя. Через шестерню коленчатый вал приводит в движение ремень (шириной 23 мм), соединенный с обоими распределительными валами. Этот ремень натягивается с помощью механического натяжного устройства (натяжителя). Интервал замены ремней распределительного вала, включая натяжитель и бегунок, составляет 240 000 км.
Двигатели из семейства VEA имеют масляную систему с масляным насосом с переменной подачей, охлаждением поршня и датчиком уровня масла. Интервалы обслуживания зависят от рынка и составляют 30 000 км или один год. Используется полностью синтетическое масло с вязкостью SAE 0W20 и обозначением марки VCC RBS0-2AE. Это масло специально разработано для Volvo и должно использоваться на всех рынках. Исключением является США, где вследствие юридических требований на рынке вместо него следует использовать масло ACEA A5/B5 5W30. Для оптимизации внутреннего трения в двигателе предусмотрена система смазки масляного насоса с полной переменной подачей. Наличие у масляного насоса переменной подачи способствует снижению расхода топлива. Ни один из двигателей семейства VEA не имеет масляного щупа.

С помощью прямого впрыска топлива бензин впрыскивается непосредственно в камеру сгорания. Прямой впрыск в бензиновом двигателе с турбонаддувом дает двигатель, имеющий топливную экономичность с высоким крутящим моментом на низких оборотах и высокой пиковой мощностью. Одним из преимуществ двигателя с прямым впрыском является то, что газовая смесь в камере сгорания может удерживаться достаточно холодной. Это дает более высокую устойчивость к детонации, что можно использовать, давая двигателю более высокую степень сжатия и/или более высокое зажигание.Более низкая температура приводит к тому, что охлаждение/испарение газовой смеси в двигателе с прямым впрыском происходит в камере сгорания. Испарение топлива понижает температуру и увеличивает степень наполнения. То факт, что теплота испарения берется из газа цилиндра вместо стенок впускного канала, приводит к тому, что двигатели с прямым впрыском могут использовать высокую степень сжатия.Чтобы еще больше снизить температуру, можно пропустить воздух через цилиндры во время перекрывания распредвалов (клапаны впуска и выпуска одновременно открыты) с положительной разностью давлений, когда давление впуска выше давления выпуска. Помимо дальнейшего охлаждения, тогда же удаляются и остаточные газы от предыдущего сгорания, которые иначе приведут к детонации. Для максимального охлаждения и обеспечения правильного вихреобразования геометрия камеры сгорания оптимизируется. Верхняя часть поршня, например, сформирована так, чтобы свести к минимуму смачивание топливом при однородном цикле (ранний впрыск во время такта всасывания) и направить топливную смесь к свече зажигания при возможном стратифицированном цикле.

Характеристики бензиновых двигателей из семейства VEA зависят от варианта двигателя, системы наддува, которая состоит только из турбонагнетателя (B4204T9/T10/T11/T12/T15) или из комбинации турбонагнетателя и компрессора (B4204T9, T10). Двигатели B4204T9 и T10 имеют максимальную мощность 306 л.с., и крутящий момент в 400 Нм обеспечивается уже при 2100 об/мин. Чтобы на таком сравнительно небольшом двигателе получить такой большой крутящий момент при очень низких оборотах, используется компрессор с ременным приводом от коленчатого вала. Компрессор используется при малых оборотах, а турбонагнетатель — при больших оборотах. На низких оборотах эта система обеспечивает высокий крутящий момент.

Характерные неисправности двигателя УМЗ-4216 в сравнении с двигателем ЗМЗ-405 определяются их малым количеством. Главным превосходящим преимуществом при эксплуатации двигателей УМЗ и ЗМЗ на газе является устойчивость к прогоранию клапанов перед ЗМЗ-405. Показатель устойчивости к прогоранию при использовании газового топлива (пропан, метан) сводится практически к нулю на УМЗ-4216, в то время как на двигателе ЗМЗ-405 вероятность прогорания составляет ориентировочно 70%, что создает владельцу атмосферу непредвиденных затрат на ремонт и простой автотранспорта.

Одной из важных характерных неисправностей 4216 является «троение» двигателя, связанное с некорректными тепловыми зазорами клапанов и решается это элементарным регулированием. В случае установленных гидрокомпенсаторов неисправность «троения» устраняется регулированием положения плунжеров, чисткой гидрокомпенсаторов, заменой их новыми или переходом на штанги без их наличия.

Остальные неисправности типовые – это низкое давление топлива, износ свечей зажигания и высоковольтных проводов и т.д.

Важно после ремонта или диагностики корректно повести сборку всех элементов головки, так как даже неверно зафиксированная деталь на блоке цилиндров способна деформироваться в процессе работы. В определенных ситуациях без демонтажа ГБЦ не удастся обойтись:

  1. расточка цилиндров блока;
  2. проблема с клапанами, при которой потребуется их замена или ремонт;
  3. проведение опрессовки клапанных втулок либо седел;
  4. потеря геометрических параметров поверхности сопряжения;
  5. прокладка пробита (потеряла герметичность);
  6. необходимость устранения микротещин.

Благодаря тому, что автомобилисту виден момент достижения необходимого усилия, обеспечивается достаточный натяг резьбы и не срываются витки. Категорически не допускается применять дополнительного наращивания ключей при завинчивании. Также важно соблюдать очередность при закручивании гаек на шпильках.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector