Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Атом как вечный двигатель

Что у атома внутри

Слово «атом» по-гречески значит ‘неделимый’. Ещё древние греки придумали идею, что всё на свете, как из кирпичиков, сложено из крошечных «кусочков» — атомов. Но это было лишь одно из возможных предположений. Что это за кусочки и существуют ли они, никто не знал до XIX века, когда химики разобрались, что такое молекула, и составили список видов атомов — таблицу химических элементов 1 .

А в самом конце XIX века вдруг выяснилось, что атом вовсе не неделимый! Он состоит из крошечного тяжёлого ядра и очень лёгких электронов, крутящихся вокруг. Потом оказалось, что и ядро можно разделить на части (хотя и очень трудно!): оно состоит из двух очень похожих видов частиц — протонов и нейтронов. Их массы почти равны, а у электрона масса почти в 2000 раз меньше (соотношение примерно как между человеком и мышкой).

Главное различие между этими частицами в том, что протоны притягивают электроны (и сами к ним притягиваются). А два протона (или два электрона) отталкиваются друг от друга с такой же силой. Эти силы называются электрическими. Нейтроны же вовсе не притягивают электроны, да и между собой и с протонами хоть и взаимодействуют, но совсем по-другому (про это мы скажем чуть ниже): в электрическом взаимодействии они не участвуют.

Договорились считать 2 , что у протонов положительный электрический заряд, у электронов — отрицательный. А у нейтронов электрический заряд — ноль. Получается правило: одинаковые по знаку заряды отталкиваются, заряды разного знака — притягиваются.

Не путайте электрическую силу с гравитационным притяжением! В самом деле, все тела, имеющие массу, притягивают друг друга. Но эта сила крошечная даже для таких «средне-тяжёлых» тел, как, например, мы с вами. Большая она только тогда, когда одно из тел очень тяжёлое — звезда, планета или хотя бы астероид. А сила гравитационного притяжения протонов (и тем более протона и электрона) ничтожна.

Электрическая сила, напротив, очень велика: если бы можно было закрепить в каком-то месте протон (и воздух, конечно, убрать), а в трёх сантиметрах над ним поместить другой протон, то второй протон не упал бы вниз, а полетел бы вверх — отталкивание одного протона сильнее гравитационного притяжения всей Земли!

Обычно вещи вокруг нас не имеют электрического заряда — в них столько же электронов, сколько и протонов. Но от некоторых атомов электроны довольно легко отрываются. И вот если отодрать от атомов одного предмета тысячу или миллион-другой электронов и «прицепить» к атомам другого предмета, эти два предмета окажутся заряжены: один — положительно (в нём протонов больше, чем электронов), а другой — отрицательно (в нём лишние электроны). А ведь тысяча протонов, если они рядом, притягивают каждый электрон в тысячу раз сильнее, чем один протон. И начнут эти два предмета притягиваться друг к другу. Случалось вам видеть что-нибудь похожее? Например, когда вы старательно причёсываетесь пластмассовой расчёской, а волосы сами собой поднимаются ей навстречу?

И ещё. В отличие от, например, животных одного вида, которые всё-таки немножко отличаются друг от друга, все протоны (или все нейтроны, или электроны) совершенно одинаковы. Так что, например, электрон, «потерявший» свой атом, уже не сможет найти его среди других таких же.

  • Конкурс ИР – «Техника – колесница прогресса»
  • Журналистская Премия ИР

Владимир Михайлов: я изобрел вечный двигатель

Как гласит народная молва, человек, который изобретет вечный двигатель, станет величайшим изобретателем всех времен и народов и ему еще при жизни должны поставить памятник, причем золотой.

Скептики скажут: «Перпетуум мобиле – это из области фантастики!». А вот заявивший о намерении стать президентом нашей страны Заслуженный изобретатель России Владимир Михайлов утверждает, что он исполнит многовековую мечту человечества. На XX Московском международном салоне изобретений и инновационных технологий «Архимед-2017» он представил теплосиловую установку, которая работает без топлива.

Наш обозреватель Ю.Егоров побеседовал с изобретателем В.Михайловым:

— Зачем он нужен и почему все великие умы над этим думали?

— В современном мире люди могут стать свободными только когда будет общедоступной энергия — электрическая и механическая.

Это произойдет, когда будет осуществлена мечта — кто-то из людей, наконец, сможет создать вечный двигатель.

— Какими же способностями должен обладать человек, чтобы создать вечный двигатель?

— Когда-то давно я смотрел передачу, в которой объяснялось почему на земле человек дальше всех шагнул в своем эволюционном развитии в сравнении с другими живыми существами. В этой передаче был дан ответ, что человек, в отличие от всех живых существ, может мыслить трехмерным пространством. Был приведен пример про дельфина: если в воде натянуть сетку, а с обратной стороны показать ему рыбу, то дельфин будет пытаться сверху-снизу-справа-слева искать возможность к ней доплыть. И если его не надрессировать на то, что сетку можно перепрыгнуть, он сам не догадается. Этим примером объяснялось отличие человека от других живых существ.

Самый показательный пример понимания трехмерного пространства — это понимание конструкции винта.

Неслучайно все великие изобретатели, начиная с Архимеда и Леонардо да Винчи, пытались его усовершенствовать. Но усовершенствовать винт можно только тогда, когда ты понимаешь его конструкцию. Из этого можно предположить, что даже не все люди могут мыслить в трехмерном пространстве. Я занимаюсь усовершенствованием конструкции винта уже более 20 лет, и в последней моей конструкции я вдруг поймал себя на мысли, что кроме третьего у меня появилось еще одно измерение. То есть, я вижу больше, чем три.

И на вопрос, какой человек может создать вечный двигатель я отвечаю: тот, который может мыслить более чем трехмерным пространством.

— Владимир Викторович, какой принцип лежит в основе вашего изобретения?

— Принцип теории конденсированных сред. Лев Ландау в 1962 году получил Нобелевскую премию за теорию конденсированных сред. Согласно этой теории, при переходе вещества из газообразного состояния в жидкое происходит выделение большого количества скрытого тепла. Все, наверное, замечали, что после дождя воздух становится ощутимо теплее. Это и есть эффект от конденсации пара. А при испарении жидкости выделяется огромное количество холода.

Сегодня широкое применение получили использующие этот эффект тепловые насосы.

— Общеизвестно, что тепловой насос выделяет в 3-5 раз больше тепла, чем расходует электроэнергии. Но ведь он берет низкопотенциальное тепло из земли.

— То, что тепло берется из земли, это заблуждение. В тепловом насосе тепло получается за счет сжатия фреона до необходимого давления, при котором, если у него забирать тепло, он конденсируется. При конденсации фреон выделяет тепла в 3-5 раз больше, чем расходуется энергии на его сжатие. Но для того, чтобы цикл не прекращался, жидкий фреон необходимо в дальнейшем испарять. При испарении он выделяет столько же холода, сколько тепла при конденсации. Чтобы процесс не остановился, для испарения фреона нужно забрать холод, только для этого и используется низкопотенциальное тепло.

Читать еще:  Эбу двигателя гольф 3 схема

Но если бы у окружающего нас воздуха были такие же физические свойства, как у фреона, то для получения тепла хватало бы только процесса сжатия. При сжатии и дальнейшей конденсации мы бы получили необходимое тепло, а полученную жидкость, которая при испарении выделяла бы холод, мы под давлением выпускали в атмосферу на определенном удалении, чтобы при испарении холодный воздух не попадал в нашу установку. И тогда для продолжения цикла не требовалось бы дополнительного тепла.

В зависимости от КПД компрессора теплового насоса при потреблении одного киловатта электроэнергии может получиться до 6,29 кВт тепла (5,29 кВт – за счет конденсации пара и 1 кВт — за счет перехода в тепло энергии двигателя компрессора) и одновременно столько же (5,29 кВт) холода, что в сумме составляет почти 11,6 кВт. Если эту полученную энергию преобразовать в механическую работу, то при КПД двигателя в 50 процентов будет выработано 5,8 кВт. То есть энергии вырабатывается почти в 6 раз больше, чем затрачивается, а 4,8 кВт (выработанные 5,8 кВт за вычетом затраченного 1 кВт) берутся как бы из ниоткуда.

— Но ничего ниоткуда браться не может, в том числе и энергия, это еще Ломоносов утверждал. В 1775 году Парижская академия наук приняла решение не рассматривать проекты вечных двигателей.

— Предлагаемый мной двигатель использует скрытую энергию фазового перехода вещества из газообразного в жидкое, и из жидкого в газообразное. Всем известно, что при ядерной реакции выделяется огромное количество энергии. Считаю, что и при переходе вещества из одного агрегатного состояния в другое на молекулярном уровне тоже происходит выделение энергии. В соответствии с сегодняшними определениями это и есть вечный двигатель, потому что после запуска он будет работать, используя постоянный, неисчерпаемый источник тепла (тепло окружающего воздуха или океана), который в моей установке используется для нагревания фреона. Температура окружающей среды, нагреваемой солнечной энергией, без которой никакие физические процессы на Земле просто не могли бы происходить, играет здесь важную роль.

Работа всех механических машин происходит за счет придания рабочему телу скорости или за счет расширения рабочего тела. А расширения можно добиться как за счет нагрева рабочего тела выше температуры окружающей среды, так и за счет нагрева холодного рабочего тела до температуры окружающей среды.

В моей установке в роли рабочего тела выступает фреон — хладагент, который при небольшом изменении температуры — всего на 80 градусов (от 20 до 100 градусов) имеет коэффициент теплового расширения, равный 10.

— Если вашему двигателю не нужно топливо, значит, вырабатываемая им энергия будет бесплатной. Правильно?

— Вырабатываемая энергия не может быть совсем бесплатной, так как у всех технических устройств существуют эксплуатационные затраты: обслуживание, замена масла, подшипников, обмотки и т.д. Но эти затраты в десятки раз меньше, чем сегодняшняя стоимость электроэнергии.

Такой двигатель на автомобиле или, к примеру, на теплоходе будет работать без применения топлива, пока не выработает свой ресурс.

— Владимир Викторович, Роспатент уже дважды отказался выдать патент на ваш двигатель. Как Вы собираетесь доказывать работоспособность своего изобретения?

— Действительно, в 2009 году моя заявка на газотурбинную установку, разработанную еще в 2007 году, (в основе ее работы был заложен тот же принцип) была отозвана с формулировкой «заявителем не показана возможность осуществления полезной модели с реализацией указанного назначения, в частности, не приведены сведения, подтверждающие, что КПД установки может превышать 100 процентов». А в сентябре 2017 года я получил заключение экспертизы на новую заявку, в котором говорится, что в описании полезной модели у меня отсутствует необходимый для работы установки источник энергии, в силу чего предложенное мной устройство признано вечным двигателем.

Теперь мне остается одно – поставить членов экспертного совета Роспатента перед фактом, представив им действующую модель своего двигателя.

— Может, Вам стоило сначала изготовить такую модель, а потом уже объявлять об изобретении?

— Конечно, в ваших словах есть логика, но ведь Константин Циолковский еще в 1895 году в своей работе «Грезы о земле и небе» не только заявил о возможности создания искусственного спутника Земли, но и указал, где должна проходить его орбита. Спустя 62 года при запуске первого в мире искусственного спутника его расчеты полностью подтвердились. Так вот я считаю, что Циолковский был человеком, чьи знания опережали время. И он был прав, когда не стал ждать, чтобы его открытие получило подтверждение. И таких примеров немало.

Да и в конце концов, мы сегодня знаем много конструкций вечного двигателя, которые в итоге не заработали. Но мой двигатель отличается от тех, что предлагались ранее, и никто не может опровергнуть мои расчеты. Поэтому я уверен, что он заработает.

Привожу конструкцию разработанного мною вечного двигателя НА ФРЕОНЕ и ОПИСАНИЕ ЕГО УСТАНОВКИ.

Установка состоит из двух замкнутых контуров: основного и вспомогательного, работающих на фреоне.

Вспомогательный контур (контур холодильной машины) содержит компрессор с электродвигателем, конденсатор, дроссель или регулировочный кран, испаритель и два воздушных теплообменника.

Основной контур включает расположенные на одном валу компрессор и турбину с нагрузкой (генератор). Испаритель вспомогательного контура установлен перед компрессором турбины основного контура, конденсатор вспомогательного контура — перед турбиной. Основной контур включает также два воздушных теплообменника: один установлен за компрессором, а другой — за турбиной.

В другом варианте компрессор вспомогательного контура может быть расположен на одном валу с компрессором турбины и турбиной.

Рабочий цикл осуществляется следующим образом. Электродвигатель вспомогательного контура мощностью в 1 кВт запускает компрессор холодильной машины. Хладагент в виде пара сжимается компрессором, нагревается и направляется в конденсатор, в котором при охлаждении происходит конденсация паров хладагента в жидкость с выделением тепла в количестве 5,29 кВт + 1 кВт тепла, полученного от работы компрессора. Затем хладагент поступает в воздушный теплообменник, в котором, в случае нехватки тепла в конденсаторе происходит доконденсация паров. Далее жидкий хладагент проходит через дроссель или регулировочный кран, после которого давление падает, далее хладагент попадает в испаритель, выделяет 5,29 кВт холода, который в дальнейшем передается хладагенту основного контура. В воздушном теплообменнике происходит доиспарение в случае недостатка тепла в испарителе для того, чтобы процесс повторялся.

Читать еще:  Двигатель mercedes actros схема

В принудительно запущенный компрессор турбины основного контура поступает фреон, охлажденный в испарителе до -5,29 кВт. Сжатый в компрессоре турбины фреон проходит через воздушный теплообменник, где нагревается до температуры окружающей среды, забирая из атмосферы тепло в количестве 5,29 кВт. Далее фреон поступает в конденсатор, забирая тепло вспомогательного контура (6,29 кВт) и поступает на турбину, в которой совершает работу. Фреон поступает в воздушный теплообменник, охлаждается до температуры окружающей среды и процесс повторяется. На 1 кВт энергии, затраченной на вращение компрессора, мы получаем -5,29 кВт холода от испарения фреона +5.29 кВт тепла от конденсации фреона +1 кВт тепла от электромотора компрессора и в сумме получаем 11,58 кВт — разницу температур от холода до тепла. Из полученной разницы по температурам при КПД установки 50% мы получим 5,7 кВт механической работы.

Так как на работу этой установки затрачивается 1 кВт энергии, а получаем 5,7 кВт механической работы, то данная установка относится к вечному двигателю первого рода – устройству, которое способно совершать работу без затрат топлива или других энергетических ресурсов, и вечному двигателю второго рода, так как мы используем энергию окружающей среды.

Интервью от 25 декабря 2017 г.

Почему открытие кристалла времени называют революцией в науке?

Характеристики кристалла противоречат сразу нескольким фундаментальным законам физики — во всяком случае так кажется на первый взгляд.

Темпоральный кристалл переходит из одного состояния в другое и обратно, не затрачивая при этом энергии (энергия лазера кристаллу не передается, выступая своеобразным «физическим катализатором») — а это подозрительно напоминает вечный двигатель, существование которого наука официально признала невозможным еще в XVIII веке. Парижская академия наук перестала принимать и рассматривать проекты вечного двигателя в 1775 году — «ввиду очевидной невозможности его создания».

Возвращаясь к аналогии чуть выше, монеты в коробке переворачиваются не произвольно, случайным образом, а упорядоченно, все вместе — как если бы между ними была какая-то необъяснимая связь, — хотя весь наш опыт подсказывает, что в жизни так не бывает.

  • Телепортация — не фантастика, а реальность. Как это работает?

Всем известно, что разбить любой предмет куда проще, чем собрать его из нескольких частей. Смешать белок и желток — дело нескольких секунд, а вот разделить их после этого практически невозможно. Эти примеры наглядно демонстрируют нам действие Второго закона термодинамики, который гласит, что с течением времени любая изолированная система, части которой взаимодействуют между собой, стремится от порядка хаосу. То есть к равномерному распределению температуры и энергии по всему своему объему. Такое состояние физики еще называют «тепловая смерть».

Отпущенный маятник не может колебаться бесконечно: во время движения он затрачивает энергию, поэтому рано или поздно колебания затухают. А энергия темпорального кристалла остается неизменной без всякой подпитки извне, поэтому в теории, в полностью изолированной системе, он может переходить из одного состояния в другое (и возвращаться обратно) бесконечно.

Сообщество Макса Планка называет эти кадры «первой в мире видеозаписью пространственно-временного кристалла»

Правда, инженер Google и ведущий автор работы Сяо Ми говорит Русской службе Би-би, что эти противоречия иллюзорны. И на роль вечного двигателя темпоральный кристал не годится.

«Хотя кристал действительно демонстрирует «вечное движение», это движение не производит энергии», — объясняет он.

«На самом деле свидетельство вечного движения в квантовых системах нам уже встречалось, — продолжает физик. — Например, в сверхпроводниках, по которым электроны путешествуют, не встречая никакого сопротивления. Или в сверхтекучих жидкостях, где, так же без всякого сопротивления, перемещаются атомы гелия. Хотя ни там ни там пространственная симметрия не нарушена — а значит, под определение темпоральных кристаллов они не попадают».

Что же касается теории относительности, где время и пространство покоятся на одном фундаменте, то в этой системе координат действительно может показаться, что, раз уж обычные кристаллы (то есть любые твердые тела в целом) нарушают пространственную симметрию, то со всей очевидностью должна нарушаться и симметрия относительно сдвига во времени,

«Несколько лет теоретических исследований ушло на то, чтобы понять: «тепловой смерти» можно избежать — путем так называемой многочастичной локализации (MBL), за счет которой нарастание энтропии в каждой части системы замедляется», — говорит Сяо Ми.

Почему реакторы на быстрых нейтронах так отстали?

Основной трудностью в освоении столь привлекательного (на бумаге) замкнутого ядерного цикла всегда была конструкторская и инженерная сложность реакторов на быстрых нейтронах. Если упростить, то можно сказать, что реактор на быстрых нейтронах — это гораздо более «горячая штучка», нежели стандартный ядерный энергоблок, использующий медленные, тепловые нейтроны и простую воду в качестве теплоносителя.

В реакторах на быстрых нейтронах все гораздо напряженнее: его пронизывают разрушительные потоки нейтронов, внутри циркулирует теплоноситель с запредельными температурами, ядерные реакции в его активной зоне идут очень быстро и непредсказуемо.

В силу этого технические трудности и экономические затраты на создание полномасштабной энергетики на быстрых нейтронах оказались на порядок выше, чем для обычных реакторов на тепловых нейтронах, которых сейчас в мире подавляющее большинство. Тогда как реакторы на быстрых нейтронах — это пока единичные экспериментальные установки.

С проблемами разработчики столкнулись еще на первом поколении реакторов на быстрых нейтронах, которые использовали в качестве теплоносителя жидкий натрий. Из четырех стран, начавших сооружение таких реакторов в мире, действующие энергоблоки, а это БН-350, БН-600 и БН-800, были построены только в СССР/России. А вот в США, во Франции и в Японии все экспериментальные реакторы на быстрых нейтронах или вовсе не вошли в эксплуатацию, или были остановлены вскоре после запуска из-за кучи выявленных инженерных и технологических проблем.

Начав проект БРЕСТ и успешно освоив технологию жидкого натрия в реакторах на быстрых нейтронах, Россия переходит к следующему, второму поколению энергоблоков, использующих гораздо более безопасный и перспективный свинцовый теплоноситель. Это действительно энергетика будущего: пока что доступность урана-235 еще не достигла критических для отрасли величин, но его запасы не бесконечны. Рано или поздно ядерная энергетика столкнется с дефицитом дешевого природного урана-235, и вот тогда реакторы типа БРЕСТ станут единственным выходом из сложной ситуации. Ведь они нарабатывают ядерное топливо сами и не нуждаются в урановом руднике для пополнения его запасов.

Атом как вечный двигатель

Российские ученые научились обогащать радиоизотоп никель-63 до максимально возможного уровня и создали на его основе миниатюрный источник питания. Энергия этой батарейки на несколько порядков превосходит запас в обычных химических.

Читать еще:  Герметик двигателя как выглядит
Два лица атомной батарейки

Батарейки и аккумуляторы повсюду — в мобильных телефонах, ноутбуках и планшетах, в часах, фонариках, фотоаппаратах, пультах управления, игрушках, зубных щетках и т. д. Потребитель не хочет быть привязанным к розетке, ему нужны легкие гаджеты с длительной автономностью, а обычные элементы питания хоть и совершенствуются, увеличивая емкость и уменьшаясь в размерах, но все равно требуют регулярной подзарядки или замены. И если в часах переставить батарейку секундное дело, то, например, в кардиостимуляторе — хирургическая операция.

Ученые много лет ищут, на чем батарейка могла бы работать если не вечно, то хотя бы несколько десятилетий. Один из вариантов — радиоизотопы. Источники на их основе условно делят на две большие группы: термоэлектрические преобразователи, РИТЭГи, и бета-вольтаические, больше известные как ядерные батарейки.


Источник питания в кардиостимуляторе Medtronic — 238Pu

Принцип работы первых основан на альфа-излучении. Оно нагревает подложку почти до 1,5 тыс. °C, затем тепло преобразуется в электрический ток. РИТЭГи — громоздкие конструкции весом до 2,5 т: помимо самого источника альфа-излучения им требуется радиационная защита.

В ядерной батарейке в электрический ток преобразуется энергия бета-распада. Для этого на излучатель, испускающий электроны, накладывают полупроводник, замыкая электрическую цепь. Первый радиоизотопный источник энергии представил в 1913 году английский физик Генри Мозли. В центре посеребренного изнутри стеклянного шара на изолированном электроде располагался радиевый источник. Электроны, испускаемые при бета-распаде, создавали разность потенциалов между серебряным слоем сферы и электродом и генерировали ток. Однако ток был слабый, эксперимент не пошел дальше лаборатории.

Первые успехи

В 1953 году американец Пол Раппапорт предложил использовать для преобразования энергии бета-распада радиоактивных элементов полупроводниковую структуру. Его схема напоминает сэндвич: слои бета-излучателя, испускающие электроны, чередуются со слоями полупроводника, который их улавливает.

В 1970-е американец Ларри Олсен создал батарейку Betacel на основе прометия-147. Это был первый коммерчески успешный бета-вольтаический источник. Для своего времени он стал революционным продуктом: около кубического дюйма в объеме, мог работать до 10 лет. Betacel использовали для питания кардиостимуляторов, в 1970-е в США устройства с радиоизотопным источником получили более 20 тыс. пациентов.

Владимир Рисованный
Директор по научному развитию, научный руководитель АО «Наука и инновации», профессор, д. т. н.

— Человечество скоро поймет, что запасенную в радиоизотопах колоссальную энергию можно и нужно использовать для решения разнообразных задач. Эта энергия превышает на единицу массы энергию всех имеющихся на сегодня источников питания. В техническом плане потенциально российские атомные батарейки на никеле-63 могут стать лучшими в мире. Единственное, что пока сдерживает массовое производство, — их высокая стоимость. Когда на такие источники энергии появится устойчивый спрос, мы сможем масштабировать производство, и батарейки станут доступнее для широкого потребителя.

Однако позднее исследования показали, что использовать такие батарейки опасно: помимо бета-излучения, которое можно блокировать тонким слоем алюминия, радиоизотоп испускает гамма-излучение, повреждающее ткани и органы. Производители кардиостимуляторов переключились на литиевые батареи, а ученые начали поиски более безопасного кандидата.

В Советском Союзе работа по созданию ядерной батарейки тоже велась. Так, в марте 1975 года советские хирурги имплантировали первый отечественный кардиостимулятор РЭКС-А1 с плутониевым источником питания. Однако плутоний стоил дорого, и использовать новые модели литиевых батарей с длительным сроком службы было выгоднее.

Лучшие в мире

Впрочем, от идеи сделать вечную батарейку наши ученые не отказались и сконцентрировали исследования на другом радиоизотопе — никеле-63, период полураспада которого 100 лет. В 2007 году в НИИАР создали первые макеты ядерной батарейки. Радиоизотоп наработали, облучая стабильный никель-62 в исследовательском высокопоточном реакторе СМ-3.


Советский кардиостимулятор РЭКС-А1

Однако активность изотопа была довольно низкой — 15 Ки/г. Увеличить ее в три-четыре раза можно было, обогатив никель-63 до предельных значений — порядка 80 Ки/г. Для этого в Радиевом институте совместно с ГХК и ЭХЗ разработали и запатентовали уникальную технологию и обогатили никель-63 на центрифугах практически в два раза — до 27 Ки/г. Затем по той же технологии ЭХЗ совместно с ГХК произвел дообогащение, получив самый высокообогащенный никель-63 в мире — 70 Ки/г. В этом году специалисты ЭХЗ планируют добиться максимума — 80 Ки/г. Исходный никель-62 для этого сейчас облучается в реакторе РБМК-1000 на Ленинградской АЭС.

Другая сложность, с которой столкнулись исследователи, — самопоглощение электронов в бета-излучателе. Чтобы отдать энергию, электроны, вылетающие с поверхности источника, должны попасть на полупроводник. Если слой бета-излучателя слишком толстый, то львиная доля электронов остается внутри, а до полупроводника долетают лишь обитатели верхнего микронного слоя. Чем тоньше слой, тем больше электронов смогут покинуть излучатель. Самые тонкие в мире слои радиоизотопа научились делать в НПО «Луч». Там разработали и запатентовали технологию создания пленок никеля-63 толщиной всего 2 мк. Это в 30 раз тоньше человеческого волоса.

Вторая составляющая ядерной батарейки — полупроводник. На роль приемника электронов рассматривали германий, кремний и его оксид, но у этих материалов слишком низкий КПД. На помощь пришел Технологический институт сверхтвердых и новых углеродных материалов (ТИСНУМ), специалисты которого начали делать полупроводники высокой энергетической проводимости из искусственных алмазов. Сотрудники ТИСНУМ и МФТИ разработали уникальную технологию синтеза и отщепления тонких, всего 10 мк, алмазных пластин от многоразовых алмазных подложек.

Энергия в миниатюре

Образец российской ядерной батарейки похож на слоеный пирог: 200 алмазных полупроводников чередуются с 200 слоями никеля-63. Размеры образца — 5×5 мм. Это в разы меньше всех аналогов, компактность — один из плюсов российской разработки. Другой — энергоемкость: 300 ватт-часов на грамм. Не сравнить с другими ядерными батарейками и тем более с химическими элементами питания.

В перспективе ядерные батарейки на никеле-63 можно использовать в микроэлектронике и медицине — в кардио- и нейростимуляторах, ушных и глазных имплантатах, биоэлектрических протезах. Миниатюрные источники пригодятся при перевозке грузов, особенно в космосе, где транспортировка каждого килограмма обходится минимум в 20 тыс. долларов.

15. Квантовая природа атомных свойств

Поскольку атомы чрезвычайно малы по размеру, они проявляют квантовые свойства, поэтому предсказание их поведения с применением классической физики всегда приведет к неверным результатам.

Когда электрон прыгает с одного энергетического уровня (орбиты) на другой, он не перемещается в пространстве между ними. Вместо этого он исчезает с одной орбиты, а затем сразу же появляется на другой орбите.

Чтобы лучше описать и оценить их поведение, несколько атомных моделей включили в себя законы квантовой физики.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector