Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что это неравномерность вращения двигателя

Устройство системы питания автомобиля

Динамический расчёт кривошипно-шатунного механизма заключается в определении суммарных сил и моментов, возникающих от давления газов и от сил инерции. По этим силам производятся расчёты основных деталей на прочность и износ, а также определение неравномерности крутящего момента и степени неравномерности хода двигателя. Во время работы двигателя на детали кривошипно-шатунного механизма действуют: силы от давления газов в цилиндре; силы инерции возвратно-поступательно движущихся масс; центробежные силы; силы от давления на поршень со стороны картера и силы тяжести. В течение каждого рабочего цикла силы, действующие в кривошипно-шатун­ном механизме, непрерывно изменяются по величине и направлению. Поэтому для определения характера изменения этих сил по углу поворота коленчатого вала их величины определяют для ряда отдельных положений вала.

Исходные данные для динамического расчёта двигателя:

Диаметр цилиндра D = 0,12 м.

Ход поршня S = 0,14 м.

Длина шатуна L = 0,25 м.

Частота вращения коленчатого вала двигателя n = 1500 мин -1 .

Масса поршневого комплекта mП. = 3,1 кг.

Масса шатуна в сборе mL. = 4,3 кг.

Безразмерная координата центра масс шатуна LB/L = 0,32.

Наружный диаметр шатунной шейки d = 0,078 м.

Диаметр полости в шатунной шейке d1 = 0,031 м.

Длина шатунной шейки с = 0,051 м.

Плотность материала коленчатого вала ρ = 7,8∙10 3 .

Ширина щеки h = 0,15 м.

Высота щеки Н = 0,175 м.

Безразмерная координата центра масс щеки ХЩ./R = 0,5.

Толщина противовеса b = 0,0285 м.

Вспомогательные расчёты двигателя

Площадь поршня, м 2

Радиус кривошипа, м

Угловая частота вращения коленчатого вала, с -1

Прямолинейно движущаяся масса в цилиндре двигателя, кг

Вращающаяся масса шатуна в отсеке двигателя, кг

Масса шатунной шейки, приведенная к её оси, кг

Масса щеки, приведенная к оси шатунной шейки, кг

Приведенная масса кривошипа, кг

Вращающаяся масса в отсеке двигателя, кг

Сила инерции вращающейся массы, кН

Расчёт сил и крутящего момента в отсеке двигателя

Сила давления газов, кН

где р – текущее значение давления газов в цилиндре, МПа.
Значение р выбирается для текущего значения угла поворота кривошипа
из расчёта рабочего процесса (табл. А.1).

Ускорение прямолинейно движущейся массы, м/с 2

где α – угол поворота кривошипа, градусы.

Сила инерции прямолинейно движущейся массы, кН

Суммарная сила, действующая в точке сочленения поршня с шатуном, кН

Нормальная сила, передаваемая поршнем на стенку цилиндра, кН

где β – угол отклонения шатуна от вертикали, градусы

Сила, передаваемая по шатуну на кривошип, кН

Радиальная составляющая силы QA на кривошипе, кН

Полная радиальная сила в отсеке, кН

Тангенциальная составляющая силы QA на кривошипе, кН

Крутящий момент на кривошипе, кН∙м

Расчёт сил и крутящего момента в отсеке двигателя на интервале углов поворота кривошипа от нуля до 710º с шагом Δα = 10º приведен в таблице 4.1. На рисунках 4.1 и 4.2 изображены графики зависимостей рассчитанных сил от угла поворота кривошипа. Для наглядности, зависимости крутящего момента на кривошипе и общего крутящего момента, рассчитываемого ниже, от угла поворота кривошипа, изображены на одном графике (рис. 4.3).

Расчёт крутящих моментов, передаваемых коренными шейками

Чтобы результаты расчёта были максимально наглядными, необходимо предварительно пронумеровать элементы коленчатого вала. Будем нумеровать кривошипы начиная от носка коленчатого вала одним числом. Коренные шейки будут соответственно нумероваться двумя числами, обозначающими номера кривошипов, с которыми соседствует данная коренная шейка. С носка коленчатого вала происходит отбор мощности для привода вспомогательных агрегатов двигателя и генератора. В общем случае, крутящий момент, возникающий при этом, необходимо учитывать в расчётах. Однако в данном случае, так как двигатель предназначен для установки с генератором, этот крутящий момент будет составлять менее 5 % от индикаторного момента на валу двигателя. Поэтому в дальнейших расчётах крутящий момент на носке коленчатого вала не учитываем.

Крутящий момент М1,2 на коренной шейке 1,2 равен моменту М1, создаваемому на первом кривошипе. Крутящие моменты на каждой последующей коренной шейке складываются из момента на предыдущей коренной шейке и момента на предыдущем кривошипе. То есть, М2,3 = М1,22; М3,4 = М2,3 + М3 и так далее. Крутящий момент на последней коренной шейке равен общему крутящему моменту МКр., создаваемому двигателем.

Крутящий момент, создаваемый на данном кривошипе, зависит от угла поворота кривошипа. При заданном порядке работы цилиндров двигателя (1-3-4-2), каждый последующий цилиндр из порядка работы цилиндров будет отставать от предыдущего на 180º. Принимаем, что угол поворота первого кривошипа равен нулю (для четырёхтактного двигателя это всё равно, что 720º, так как весь его цикл длится два оборота коленчатого вала). Значения крутящегомомента при известном угле поворота кривошипа выбираются из таблицы 4.1.

Читать еще:  Двигатель 1pz технические характеристики

Все полученные величины крутящих моментов на любом кривошипе для углов поворота кривошипа от нуля до 710º с шагом Δα = 10ºсведены в таблицу 4.2. По рассчитанным значениям строится график зависимости общего крутящего момента, создаваемого двигателем, от угла поворота коленчатого вала, представленный на рисунке 4.3. На этом графике также нанесена величина среднего крутящего момента МКр.Ср., определяемая как среднее арифметическое значений крутящего момента на всём интервале углов поворота коленчатого вала.

Расчёт нагрузок на шатунные шейки и подшипники

В однорядном двигателе шатунная шейка нагружена силой QA, передаваемой по шатуну, и силой инерции PB.L. вращающейся массы шатуна. Для удобства расчётов, силу QA заменяют двумя силами – ZA, направленной к центру вращения кривошипа, и TA, направленной под углом
90º к ZA в сторону вращения кривошипа (рис. 4.4).Шатунный подшипник нагружен реакциями шатунной шейки (рис. 4.5).

При расчёте нагрузки на шатунную шейку, КШ., используют систему коодинат ZШ. – ТШ., вращающуюся вместе с коленчатым валом. А составляющие реакции при расчёте нагрузки на подшипник, RШ., определяют в системе координат RZ.Ш. – RТ.Ш., жёстко связанной с шатуном (см. рис. 4.5).

Радиальная составляющая нагрузки на шатунную шейку, кН

Тангенциальная составляющая нагрузки на шатунную шейку, кН

Полная нагрузка на шатунную шейку, кН

Полученные значения нагрузок ZШ. и ТШ. можно использовать для определения нагрузок на шатунный подшипник. Составляющие нагрузок, кН

Полная нагрузка на шатунный подшипник, кН

Значения ZA и ТА при заданном угле поворота кривошипа выбирают из таблицы .

1. Все расчёты по пункту .5 для углов поворота кривошипа от нуля до 710º с шагом Δα = 10º представлены в таблице .3.

Также по результатам данного расчёта построены годографы нагрузок на шатунную шейку и шатунный подшипник. Они изображены соответственно на рисунках 6. и 7.

Оценка неравномерности вращения коленчатого вала

Избыточная работа суммарного крутящего момента двигателя определяется как площадь наибольшей фигуры, образованного кривыми общего крутящего момента двигателя, МКр., и среднего крутящего момента, МКр.Ср. (рис. 4.3), с учётом масштаба графика. Она равна Lизб = 94,5 кН∙м.

Момент инерции вращающихся масс кривошипно-шатунного механизма в одном отсеке

где ZП – число противовесов, приходящихся в среднем на один кривошип.

Момент инерции обода маховика

где — плотность материала маховика, кг/м 3 ;

b – ширина маховика, м;

r2 – внешний радиус обода маховика, м;

r1 – внутренний радиус обода маховика, м.

Момент инерции ступицы маховика

где b1 – ширина ступицы маховика, м;

r – радиус ступицы маховика.

Момент инерции маховика

Момент инерции вращающихся масс кривошипно-шатунного механизма

Степень неравномерности вращения коленчатого вала

Неравномерность вращения коленчатого вала должна составлять для дизель-генератора

Маховик: что это и для чего он нужен

Схематичное изображение маховика на коленчатом валу: 1 — коленчатый вал; 2 — маховик с зубчатым венцом; 3 — шатунная шейка; 4 — коренная шейка; 5 — противовес

Маховик — это похожее на диск устройство, которое крепится к задней части коленчатого вала.

Маховик имеет достаточно значительную массу и, соответственно, способен, согласно законам физики, накапливать и отдавать кинетическую энергию. Именно благодаря такому свойству эти узлы используются в современных двигателях внутреннего сгорания в качестве конструкций, позволяющих сглаживать неравномерность вращения коленчатого вала. В периоды рабочего хода поршня маховики накапливают энергию крутящего момента, а когда поршни находятся в так называемых «мертвых точках», выводят эти детали из них, отдавая энергию.

Необходимо отметить, что чем большим количеством цилиндров оснащен ДВС, тем более равномерным крутящим моментом он обладает. Следовательно, в таких двигателях внутреннего сгорания можно использовать маховики меньшего веса, чем в тех моторах, которые имеют небольшое количество цилиндров.

Еще одной важной функцией маховиков двигателей внутреннего сгорания является трансляция крутящего момента на коленчатый вал от стартера. На внешней окружности этого узла монтируется зубчатый стальной обод, который называют венцом. Он находится в зацеплении с валом, идущим от стартера и имеющим зубчатое колесо. Когда водитель включает зажигание, стартер проворачивает этот вал, а он, в свою очередь — маховик, который приводит в движение коленчатый вал. Именно благодаря этому и производится запуск двигателя.

Статья в тему: Cцепление Cакс: что нужно знать перед покупкой

Кроме того, маховики играют немаловажную роль в трансмиссии современных автомобилей, играя в них роль ведущих дисков сцепления. Таким образом, именно благодаря им вращательный момент коленчатого вала ДВС передается на коробку переключения передач, а уже от них транслируется на ведущие колеса.

Читать еще:  Двигатель cat 3054c характеристики

Системы привода

Большая часть выпускаемых сегодня легковых автомобилей оснащается приводными залами с шарнирами равных угловых скоростей. От­дельные схемы привода ведущих колес по­казаны с гомокинетическими (от греческого homos = одинаковый и kine = двигаться) шарни­рами (рис. 6 «Схемы привода ведущих коле»).

При переднем приводе ведущими являются передние колеса. На приводных валах со стороны колеса при­меняются жесткие ШРУСы (без возможности продольного перемещения деталей), а со сторо­ны коробки передач — универсальные (с возмож­ностью продольного перемещения). Передние колеса — управляемые, поэтому угол поворота в шарнире со стороны колеса должен достигать примерно 50°.

Из-за поперечного расположения двигателя и связанной с этим асимметрии в моторном отсеке приводные валы могут быть разной длины.

При заднем приводе ведущими являются за­дние колеса. На приводных валах как со стороны колеса, так и со стороны коробки передач применяются универсальные ШРУСы, поскольку в этом случае шарнир — в отличие от переднего привода — дол­жен компенсировать только изменение длины ва­лов из-за хода подвески вверх-вниз.

При полном приводе ведущими являются все колеса. Шарниры приводных валов применяются точ­но так же, как на описанных выше переднем и заднем приводах. Крутящий момент от силового агрегата на задние или (при расположенном сзади двигателе) на передние колеса передается с помощью продольного вала.

Частота вращения валов в этом случае может достигать 6000 об/мин, поэтому продольные валы оснащаются высокооборотными шарнирами. Далее отдельные типы шарниров рассматриваются более подробно.

Сайт о внедорожниках УАЗ, ГАЗ, SUV, CUV, кроссоверах, вездеходах

Регулирование холостого хода двигателя ЗМЗ-51432 CRS заключается в стабилизации его блоком управления минимальной частоты вращения коленчатого вала на режиме холостого хода двигателя без воздействий посредством педали акселератора. Частота вращения при этом устанавливается на уровне соответствующем состоянию двигателя. Например у холодного двигателя устанавливается более высокая частота вращения холостого хода, чем у горячего.

При регулировании частоты вращения холостого хода блоком управления учитываются затраты мощности : на привод генератора при пониженном напряжении в сети и насоса ГУР, на привод топливного насоса высокого давления, на преодоление внутренних потерь двигателя. При снижении напряжения в бортсети автомобиля частота вращения холостого хода увеличивается для обеспечения подзарядки аккумуляторной батареи.

Система регулирования плавности холостого хода ЭБУ двигателя ЗМЗ-51432 CRS.

Принцип регулирования частоты вращения холостого хода.

Требуемая частота вращения коленчатого вала устанавливается в соответствии с многопараметровой характеристикой, сохраняемой в памяти электронного блока управления двигателем. Этой характеристикой учитывается информация о температуре охлаждающей жидкости и о наряжении бортсети автомобиля.

Блок управления двигателем изменяет дозу впрыскиваемого топлива до тех пор, пока частота вращения коленчатого вала не достигнет требуемой величины. Чтобы предотвратить чрезмерный выброс вредных веществ, частоту вращения холостого хода по возможности снижают. При этом, однако, учитываются требования к плавности хода двигателя.

Сглаживание неравномерности работы цилиндров двигателя ЗМЗ-51432 CRS.

Сглаживание неравномерности работы цилиндров двигателя, позволяет снизить его вибрации при работе на режиме холостого хода. Отдельные цилиндры двигателя создают различные крутящие моменты даже при равенстве доз впрыскиваемого в них топлива. Причинами этого могут быть : отклонения размеров деталей в пределах допусков, различия в степенях сжатия, различия в трении поршней, отличия гидравлических характеристик компонентов системы топливоподачи.

Следствием различий крутящего момента являются повышенная неравномерность вращения коленчатого вала и повышенный выброс вредных веществ с отработавшими газами. Система регулирования плавности холостого хода распознает различия в работе отдельных цилиндров по колебаниям частоты вращения коленчатого вала и сглаживать их, изменяя соответственно цикловые дозы топлива, впрыскиваемого в отдельные цилиндры.

Принцип действия системы регулирования плавности холостого хода ЗМЗ-51432 CRS.

Неравномерный ход двигателя на холостом ходу распознается по сигналам датчика положения коленчатого вала. Если эти сигналы следуют друг за другом через постоянные промежутки времени, различия в работе отдельных цилиндров отсутствуют. Если один из цилиндров развивает меньшую мощность, чем другие, поворот коленчатого вала до следующей вспышки длится дольше.

Цилиндр с повышенной мощностью заставляет поворачиваться коленчатый вал между вспышками быстрее. Если блок управления распознает неравномерность хода двигателя, то увеличивает или уменьшает подачу топлива в соответствующие цилиндры до выравнивания вращения коленчатого вала.

Ограничение максимальной частоты вращения коленчатого вала.

Благодаря ограничению максимальной частоты вращения коленчатого вала предотвращается работа двигателя на режимах, которые могут привести к его повреждению. Поэтому максимальная частота вращения выбирается так, чтобы не допустить длительную работу двигателя на опасных для него скоростных режимах.

Читать еще:  Электромаховичный двигатель белашова своими руками
Принцип действия системы ограничения максимальной частоты вращения коленчатого вала ЗМЗ-51432 CRS.

При превышении заданной частоты вращения производится последовательное снижение подачи впрыскиваемого в цилиндры топлива. При выходе двигателя на максимальную частоту вращения подача топлива поддерживается на постоянном уровне до тех пор, пока не изменятся условия движения автомобиля. Процесс ограничения частоты вращения протекает плавно, чтобы не вызвать резкие изменения крутящего момента при разгоне автомобиля.

Маховик: что это и для чего он нужен

Схематичное изображение маховика на коленчатом валу: 1 — коленчатый вал; 2 — маховик с зубчатым венцом; 3 — шатунная шейка; 4 — коренная шейка; 5 — противовес

Маховик — это похожее на диск устройство, которое крепится к задней части коленчатого вала.

Маховик имеет достаточно значительную массу и, соответственно, способен, согласно законам физики, накапливать и отдавать кинетическую энергию. Именно благодаря такому свойству эти узлы используются в современных двигателях внутреннего сгорания в качестве конструкций, позволяющих сглаживать неравномерность вращения коленчатого вала. В периоды рабочего хода поршня маховики накапливают энергию крутящего момента, а когда поршни находятся в так называемых «мертвых точках», выводят эти детали из них, отдавая энергию.

Необходимо отметить, что чем большим количеством цилиндров оснащен ДВС, тем более равномерным крутящим моментом он обладает. Следовательно, в таких двигателях внутреннего сгорания можно использовать маховики меньшего веса, чем в тех моторах, которые имеют небольшое количество цилиндров.

Еще одной важной функцией маховиков двигателей внутреннего сгорания является трансляция крутящего момента на коленчатый вал от стартера. На внешней окружности этого узла монтируется зубчатый стальной обод, который называют венцом. Он находится в зацеплении с валом, идущим от стартера и имеющим зубчатое колесо. Когда водитель включает зажигание, стартер проворачивает этот вал, а он, в свою очередь — маховик, который приводит в движение коленчатый вал. Именно благодаря этому и производится запуск двигателя.

Кроме того, маховики играют немаловажную роль в трансмиссии современных автомобилей, играя в них роль ведущих дисков сцепления. Таким образом, именно благодаря им вращательный момент коленчатого вала ДВС передается на коробку переключения передач, а уже от них транслируется на ведущие колеса.

Что такое крутильные колебания?

Любой маховик двигателя имеет определенную массу, которая не в полной мере сочетается с коленчатым валом мотора. При вращении коленвала, маховик, обладая большой массой, начнет колебаться, что приводит к появлению определенных вибраций не только на нем, но и на валу. Частота и амплитуда колебаний будет напрямую зависеть от массы маховика, а также его радиуса. Чем больше расстояние от края до центра и больше масса маховика, тем выше эта частота колебаний.

При уменьшении воздействия, которое прилагается от поршней и шатунов, уменьшаются и вибрации. Логично предположить, что если не прилагать большую нагрузку на коленвал, от этих вибраций можно избавиться, однако мы не в состоянии постоянно снижать нагрузку на вал, так как автомобиль все время находится в движении. Данный вид колебаний, получаемых при воздействии на маховик внешних сил, называется вынужденным.

Опасным явлением, в которое могут перерасти колебания – это резонанс. В процессе вращения маховика, он находится в механической связи с первичным валом коробки передач. Вал КПП также имеет небольшую величину вибраций, которая взаимно передается на маховик коленвала. Если эти колебания совпадают, это приводит к резонансу – пропорциональному повышению колебаний обоих механических элементов и, как следствие, к разрушению обоих валов.

Что сокращает срок службы маховика?

Езда в натяг на низких оборотах – наиболее вредоносный для демпферного маховика режим работы. На авто с АКПП о балансе между сохранностью узлов и экономией топлива заботится ЭБУ коробки передач. На авто с МКПП вся ответственность лежит на водителе. Поэтому рекомендуем держать низкие обороты только для поддержания постоянной скорости. При обгоне либо подъемах обязательно переключайтесь на пониженную ступень. Из-за обилия крутящего момента, который доступен с самих низких оборотов, на современном авто вы можете даже не почувствовать возросшую нагрузку. Но детали КШМ и DMF при разгоне в натяг переживают сильнейшие нагрузки.

Не прибавят маховику ресурса и резкие старты с места, постоянное бросание педали сцепления и значительная форсировка двигателя. Износ подушек крепления КПП, двигателя, неисправность в системе зажигания или питания, при которой двигатель работает неровно, также значительно уменьшают срок службы демпферного маховика.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector