Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель никасил

Никосиловое покрытие цилиндров что это такое?

В последнее время мы получаем множество вопросов от пользователей продукции ЗВК «Реагент 3000» — почему не рекомендуется использование составы для двигателей, в которых есть никасиловое или тефлоновое покрытие?

Немного истории…

Что такое Никасил (Nikasil)? Это торговая марка технологии обработки поверхности цилиндров и поршней, применяемая при изготовлении алюминиевого блока цилиндров двигателей внутреннего сгорания без дополнительных гильз и антифрикционных слоев. Эта технология имеет большое количество неоспоримых преимуществ перед традиционными методами изготовления ДВС. Наряду с отличными динамическими свойствами, при значительном снижении веса, намного проще регулировать тепловой режим, благодаря тому, что теплопроводность алюминия примерно в 4 раза выше используемых обычных материалов.

Технология была разработана в 1967 году и первоначально применялась на роторных двигателях в серийных автомобилях NSU Ro 80 (Германия, годы выпуска 1967-1977) и экспериментальном Mercedes-Benz C111 (Германия, 1970).

С 1973 года компания Porshe так же до настоящего времени применяет эту технологию на серийных автомобилях Porshe 911 серий Turbo и RS, что позволяет Porsche производить уникальные двигатели воздушного охлаждения с самой высокой удельной мощностью.

Никасил был очень популярен в 1990-х.

Он применялся такими компаниями, как Audi, Ferrari, Jaguar Cars и Moto Guzzi, но наиболее активно никасил применялся компанией BMW и не только в дорогостоящих, но и в автомобилях среднего ценового диапазона. Так же активно в 90-х годах никасиловое покрытие массово применялось, например, компаниями Honda и Suzuki при производстве двигателей для мотоциклов.

Неприятной особенностью никасилового покрытия, выявившейся в процессе эксплуатации серийных автомобилей, оказалась высокая чувствительность покрытия к качеству топлива.

Повышенное содержание серы приводит к разрушению никасиловой пленки, её осыпанию и как результат к гарантированному выходу двигателя из строя.

Большое количество гарантийных случаев замены двигателей компанией БМВ по всему миру привело к постепенному отказу от использования технологии Никасил в массовом производстве.

Тем не менее, автомобили, с никасиловым покрытием в двигателях, до сих пор активно эксплуатируются в России, так как большое количество подержанных БМВ и Ауди выпуска 90-х годов было завезено к нам в начале 2000-х.

Так же не исключена возможность приобретения подержанного автомобиля с двигателем в котором применена технология Никасил и других производителей, как правило, это автомобили либо спортивного типа, либо относятся к классу дорогостоящих автомобилей.

Применение продуктов линейки ЗВК «Реагент 3000» на таких автомобилях производителем категорически не запрещается.

За время производства и применения наших препаратов накоплен большой положительный опыт обработки двигателей с никасиловым покрытием «Реагентом 3000», в частности в Одессе в клубе BMW, где от применения ЗВК «Реагент 3000» — только положительные результаты.

Тем не менее, мы не рекомендуем применение нашей продукции на таких двигателях, потому что не можем гарантировать нормальную работу двигателей с никасиловым покрытием в условиях применения некачественного или суррогатного топлива с повышенным содержанием серы. Применение нашей продукции не вредит никасиловому покрытию ДВС, но и не сможет ему помочь.

Если в никасиловой пленке, покрывающей стенки цилиндров, уже начались необратимые процессы химического разрушения, вызванные использованием топлива с повышенным содержанием серы, то данное покрытие в конечном итоге разрушится и это приведет к поломке двигателя. А если на таком двигателе потребитель применил ЗВК «Реагент 3000» для любых моделей двигателя, то выход двигателя из строя может быть им связан с использованием ЗВК «Реагент 3000».

Так что во избежание рекламаций, применяйте продукцию ЗВК «Реагент 3000» строго по инструкции.

Что касается применения ЗВК «Реагент 3000» для любых моделей двигателя в ДВС с установленными поршнями, у которых есть тефлоновое покрытие в области юбки (или с дисульфидом молибдена), особо отметим, что такие поршни на серийные автомобили не ставятся, а идут в ремонтных комплектах для разных марок автомобилей, как иностранного так и отечественного производства. Таким образом, если при ремонте ДВС Вы установили на свой автомобиль такие поршни — мы КАТЕГОРИЧЕСКИ не рекомендуем обрабатывать его продукцией ЗВК «Реагент 3000», так как при формировании нашими препаратами защитного слоя мягкий тефлон может частично удаляться с юбки поршня, что может привести к увеличению рабочих зазоров.

Если у Вас есть сомнение в том, какой двигатель используется в Вашем автомобиле или мотоцикле — проконсультируйтесь, например, с дилером марки в Вашем городе, либо самостоятельно изучите вопрос используя поисковые системы сети интернет.

Вне зависимости от типа и модели Вашего двигателя, мы рекомендуем для уменьшения содержания серы и более полного и качественного сгорания используемого топлива применять ЗВК «Реагент 3000» для топливной системы. Данный продукт позволит избежать в большинстве случаев негативных последствий от использования некачественного топлива, снизить потребление топлива и токсичность выхлопных газов и увеличить мощность и качество сгорания автомобильного топлива.

ЗВК «Реагент 3000» стоит на защите автомобиля и Ваших интересов!

Технологии никелирования в домашних условиях, оборудование и составы раствора

Защита «железа» от коррозии производится в нескольких случаях: при первичной обработке, в целях восстановления повреждения на отдельном участке или декорирования какого-либо образца.

При этом используются различные металлы – латунь, медь, серебро и ряд других.

Разберемся с технологией никелирования в домашних условиях как одной из самых простых и доступных в плане самостоятельной реализации.

Кроме того, она является и самой распространенной. При покрытии деталей защитным слоем из других металлов тончайшая пленка никеля играет роль промежуточного. Его целесообразно наносить, к примеру, перед хромированием деталей.

Примечание. Рецептов использующихся химикатов довольно много. Автор счел правильным привести лишь те, в эффективности которых он убедился лично, нанося защитное никелевое покрытие в домашних условиях.

Единица измерения компонентов – г/л воды (если иное не оговорено). Все использующиеся химикаты разводятся отдельно, тщательно фильтруются и только после этого перемешиваются для получения электролитического раствора.

Алюсил не виноват: настоящие причины ненадежности алюминиевых моторов

Алюсил? Не, не слышал

Сам по себе алюминий – металл достаточно мягкий, – это знают все, кто гнул в детстве бабушкины алюминиевые вилки. И даже прочности его сплавов, которые используются в автомобилестроении, недостаточно для использования на поверхности цилиндра – он попросту не выдержит трения поршневых колец.

Но соблазн использовать цельноалюминиевый мотор слишком велик. Масса алюминиевого блока в разы меньше, чем у чугунного, он лучше прогревается, у него меньше напряжения в сопряжении блока и головки цилиндров. Казалось бы, запрессовать чугунные гильзы в алюминий и успокоиться, но и тут есть сложности.

Так называемая «мокрая» посадка гильзы, как на моторах ЗМЗ V8, не обеспечивает достаточной жесткости и не технологична, а «сухая» гильза, которую заливают в блок на этапе отливки или штамповки, обходится дорого. И в любом случае чугун ухудшает теплопередачу и тепловой зазор приходится оставлять большим из-за разного коэффициента расширения металлов. А новые требования к моторам заставляют искать способы уменьшения зазоров в цилиндрово-поршневой группе для усовершенствования работы «на холодную» и улучшения экологичности.

Газ-53 с двигателем ЗМЗ V8

Выход нашли сначала в нанесении на алюминий очень тонкого слоя особопрочного материала. Пример тому – покрытие по технологии Nikasil из сверхтвердого карбида никеля, наносимое гальваническим методом на алюминиевую гильзу цилиндра.

Читать еще:  Двигатели газ штайер тех характеристики

Технология была разработана в 60-е годы для роторно-поршневых моторов NSU и применялась на легендарных Ro-80 и на некоторых Porsche, а в 90-е годы пришла в массовое автомобилестроение. Но совсем ненадолго. Буквально за пять-шесть лет выпуска производители «разочаровались» в технологии. Формальным поводом стали случаи разрушения прочнейшего покрытия из-за химических проблем: например, при использовании высокосернистого топлива. Особенно часто сложности встречались в северных штатах США и в Канаде.

NSU Ro 80 ‘1967–1977

Отзвуки громкого скандала с никасилом дошли и до нас, но это как раз тот случай, когда проблема оказалась вовсе не технической – просто это очень дорогой способ, и у него «нашли» «недостаток». Хотя дело было скорее в низкой технологичности и высоких шансах на производственный брак при сложной процедуре. Забавно, что громкий отказ в массовом автомобилестроении от никасила никак не повлиял на его использование в мотоспорте и на заряженных гражданских мотоциклах: там он по-прежнему весьма популярен.

Но потерпев неудачу с никасилом, конструкторы не отчаялись и обратились к более технологичным аналогам. Вспомним, что чугун в моторах появился не просто так. На поверхности этого металла при обработке проявляются зерна графита, благодаря твердости которых чугунные цилиндры обладают высокой износостокостью. Если насытить алюминий кремнием выше определенного порога, то можно получить своеобразный «алюминиевый чугун» – заэвтектический сплав, в котором кремний будет содержаться в виде очень твердых износостойких зерен.

Достаточно лишь в блоке цилиндров, отлитого из заэвтектического сплава, специальным образом обработать поверхность цилиндра, «осадив» алюминий и оставив зерна кремния на поверхности. Технология Alusil или Silumal, основанная на этом принципе, а также гильзы по технологии Locasil, оказались крайне инновационны и недороги. Во многом этот способ даже дешевле «сухих» чугунных гильз в алюминиевом блоке. А о достоинствах цельноалюминиевого мотора я уже писал выше. И все же вал отказов моторов с алюсиловыми цилиндрами вполне обоснованно ставит под сомнение надежность самой технологии. Но в ней ли проблема?

В теории все отлично

Если ограничиться только широкоизвестными примерами «неудачных» моторов, то можно подумать, что именно в покрытии цилиндров и заключена суть проблемы. Но стоит приглядеться подробнее и обнаружится, что весьма удачных моторов с технологией Alusil хватает. Вот, например, серия двигателей M112-M113 от Mercedes, которые вполне обоснованно считаются крайне надежными, беспроблемными и неприхотливыми. И не беда, что тут гильзы цилиндров с алюсиловым покрытием – моторы проходят все 300-500 тысяч километров до проблем с поршневой группой, и известны примеры с куда большими пробегами – при нормальной эксплуатации износ в этом сопряжении практически отсутствует. В чем же разница между ними и признанными «неудачниками» серии М272-М273?

Двигатель Mercedes-Benz M113.M273

Алюминиевые блоки обеспечивают более стабильные характеристики поршневой группы при нагревании, позволяют почти без ущерба давать нагрузку на непрогретый мотор, а в итоге гарантируют лучшую экологичность и экономичность. И с ресурсом в теории тоже все хорошо: очень «скользкое» покрытие с минимальным коэффициентом трения, хорошими характеристиками удержания масляной пленки и высочайшей твердостью поверхностного слоя может работать очень-очень долго. Почти так же долго, как и очень дорогой Nikasil, и больше, чем чугун. Почему же на практике получается иначе?

Разберем подробно на примере пары двигателей: надежного М112 и крайне неудачного М272 от одного производителя, почтеннейшего Mercedes-Benz. Оба двигателя ставили на целый ряд машин, от С- до S-классов и тяжелых внедорожников на протяжении более 10 лет. Самое время проанализировать накопленный опыт. Представлю героев этой статьи подробнее.

Хороший пример

Моторы серии М112-М113 – унифицированное семейство моторов V6 и V8, с углом развала блока 90 градусов, с рабочим объемом от 2,6 до 5,4 литра. Моторы V8 отличаются от V6 только наличием еще двух цилиндров и отсутствием балансирного вала в развале блока, в остальном они идентичны. На базе шести- и восьмицилиндровых моторов этих серий делали и компрессорные агрегаты для машин AMG.

Блок цилиндров из алюминиевого сплава, сухие гильзы из заэвтектического алюминиевого сплава. Кованый коленчатый вал, кованые шатуны, привод ГРМ двухрядной роликовой цепью, по одному респредвалу на ГБЦ (SOHC), три клапана на цилиндр: два впускных, один выпускной. Распределенный впрыск, система зажигания с двумя свечами на цилиндр. Фазовращателей нет. Впускной коллектор переменной длины. Простой термостат, привод вентилятора через вискомуфту, температура термостатирования 87 градусов. Охлаждение масла в водомасляном теплообменнике.

Двигатель Mercedes-Benz M112

Мощностные показатели более чем неплохие, особенно с учетом сравнительно небольшой массы моторов и малых размеров – ГБЦ очень компактные. Моторы V6 с рабочим объемом 3,7 литра без наддува выдают до 245 л. с. и 344 Нм, а V8 объемом 5,4 литра – все 367 л. с. и 530 Нм крутящего момента. Компрессорные варианты – так и вовсе вплоть до 650 л. с.

Основные недостатки конструкции давно известны. Сравнительно высокий расход масла на угар из-за малого натяга поршневых колец и быстрого износа сальников выпускных клапанов. Течи масла с теплообменника двигателя, а при загрязнении системы вентиляции картера и с крышек ГБЦ, а также других мест. Не очень высокое качество резиновых уплотнений, но сальники выпускных клапанов выходят из строя в основном из-за высокой температуры единственного выпускного клапана.

Трескаются выпускные коллекторы из-за конструктивных просчетов. Сложно менять свечи нижнего ряда, и этой процедурой пренебрегают при обслуживании, из-за чего моторы часто не выдают расчетные характеристики. Сравнительно мал ресурс катализаторов, а при прогрессировании расхода масла они выходят из строя очень быстро. Выпускной коллектор имеет изнашиваемые заслонки, которые теряют уплотнение к пробегу в 200-350 тысяч километров и иногда выходит из строя их привод, после чего мотор значительно теряет либо в тяге «на низах», либо «на верхах».

Если вовремя заменить сальники клапанов, не допускать перегревов, вовремя устранять течи теплообменника и менять прокладки, то мотор даже со стандартным интервалом обслуживания в 15 тысяч километров и «оригинальном» масле способен на более чем 200 тысяч пробега. При качественном обслуживании и при пробегах «за 300» он вполне бодро себя чувствует, не требуя замены поршневой группы и цепей. Задиры поршневой группы на M112/113 – часто следствие пренебрежения интервалами замены воздушного фильтра, плохого масла и перегревов.

Причем перегреть этот мотор достаточно сложно, если только ездить с неисправным термостатом или порванным ремнем привода вентилятора и помпы. Моторы эти имели экологический класс Euro 3 и Euro 4, выпускались с 1997 года и считались очень удачными. Но прогресс – штука неумолимая.

Плохой пример

В 2004 году на моделях C-, E- и S-класса появились новые двигатели серии M272/273 с примерно такими же характеристиками. Моторы серии M113 оставили только для «проходимца» G55. Чем же новые агрегаты были хуже и почему для владельцев они превратились в символ угасания качества марки Mercedes?

Серия двигателей M272-M273 тоже унифицирована, это V6 и V8 охватывает диапазон рабочего объема с 2,5 до 5,5 литра. На первый взгляд моторы мало изменились в сравнении с предшественниками, но тем не менее где-то кроются те изменения, которые сказались на надежности самым радикальным образом.

Читать еще:  Ваз 219210 какой двигатель

Под капотом Mercedes-Benz SLK 350 ‘2004–07

Блок цилиндров с тем же межцентровым расстоянием, тоже алюминиевый. Целиком отлит из заэвтектического алюминиевого сплава, гильз не имеет. Кованый коленчатый вал, кованые шатуны, привод ГРМ двухрядной роликовой цепью. Два верхних распредвала в каждой ГБЦ (DOHC), четыре клапана и одна свеча на цилиндр. Фазовращатели на впускных и выпускных валах. Впрыск распределенный на большинстве моделей, но есть и варианты с непосредственным (CGI) впрыском. Впускной коллектор переменной длины. Электровентиляторы системы охлаждения, управляемый термостат с электронным управлением. Температура термостатирования без учета нагревательного элемента уже 100 градусов. Охлаждение масла происходит в водомасляном теплообменнике.

Масса и габариты моторов выросли: весить агрегат стал в среднем больше на 10-15 кг и прибавил в ширину восемь см. Правда, мощность немного подросла. Самые объемные V6 3,5 литра выдают 272-316 л. с. в варианте с обычным и непосредственным впрыском, а 5,5 литра V8 все 388 л. с. Крутящий момент остался прежним, 350-360 Нм для V6 и 530 Нм для V8, но сместился в зону низких оборотов: если у М112 максимум достигался при 3 000-3 500 оборотах, то у М272 это уже 2 400-2 500 оборотов, что хорошо сказывается на динамике и экономичности.

Казалось бы, совершенно непринципиальные изменения. Но вот недостатков у нового мотора оказалось куда больше, чем преимуществ. Первые серии двигателей поразили «новшеством» в виде небывало низкого ресурса ГРМ. При пробегах всего в 60 тысяч километров могучая двухрядная цепь могла перескочить и загнуть клапаны мотора. Учитывая специфику V образных двигателей, часто это приводило к отрыву клапанов и полному разрушению агрегата.

Система непрерывного изменения фаз ГРМ оказалась капризной и дорогой: первые ее варианты имели ресурс опять же в пределах 80-100 тысяч километров и хорошую вероятность отказа при меньшем пробеге. Вина лежит в основном на неудачно выбранном материале цепи балансиров, которая быстро изнашивалась, ломала зубья, но сама цепь ГРМ и материалы звезд ГРМ тоже оказались излишне мягкими и изнашивались следом.

И впускной коллектор оказался с сюрпризом: если на моторах М112 выход его из строя был редкостью, то на М272 его замена выполняется уже в рамках обычного техобслуживания, примерно каждые 60 тысяч километров. Mercedes доработал конструкцию, но на это ушло немало времени. Недостатки ГРМ в основном устранили после 2007 года, когда стабильный ресурс цепи достиг примерно 120 тысяч километров, и система управления фазами тоже была доработана для достижения стабильного ресурса, сравнимого с ресурсом цепи. Впускной коллектор так и остался проблемным местом.

Нужно отметить, что все работы по ГРМ на этом двигателе очень дороги, а звезда балансирного вала меняется только вместе с самим валом, что требует снятия двигателя. Стоимость работ и материалов составляет не меньше 200 тысяч рублей. Ну а цена впускного коллектора в 60 тысяч рублей на фоне этого может считаться просто мелочью, тем более что «гаражный сервис» заслонки просто удаляет и без видимого вреда для мотора.

Еще одна проблема проявилась именно с поршневой группой этого двигателя: задиры цилиндров и связанный с ними высокий расход масла стали проявляться при совершенно смешных по мерседесовским меркам пробегам, порядка 80-100 тысяч километров, причем для моторов после 2007 года эта сложность могла вылезти раньше, чем заканчивался ресурс ГРМ.

Как следствие всех этих особенностей выросла стоимость эксплуатации и число отказов, в том числе требующих замены блока цилиндров или гильзовки. Но в общем-то и проблемы «предка» в лице М112 никуда не делись: слабые уплотнения, система вентиляции, теплообменник все также протекает и катализаторы умирают быстро. Правда, такой мотор масла практически не расходует, в отличие от предшественников, для которых пол-литра или литр на 15 тысяч километров пробега был в общем-то нормой, которая еще не говорила о начинающихся проблемах. Самое время взглянуть внимательнее, чем еще отличаются моторы и что может влиять на ресурс поршневой группы. И причем тут вообще алюсил.

Самое очевидное, что сказывается на условиях работы поршневых колец и сальников клапанов, – это изменение рабочей температуры. 87 градусов против 100 кажется не такой уж значительной прибавкой, но надо учесть еще и режим работы вентиляторов. Вискомуфта на М112 обеспечивает резкое снижение температуры сразу после открытия термостата при исправной работе и при заклинивании, а электровентиляторы на М272 срабатывают только при 107 градусах, даже если термостат открылся раньше. Побочным эффектом управляемого термостата является и резкое повышение вероятности детонации при ускорениях после пробок – мотор не успевает остыть быстро даже при снижении порога термостатирования под нагрузкой. А детонация для алюсилового мотора легко разрушает легкий слой поверхностного упрочнения.

Поршни, на первый взгляд, разнятся мало: почти одинаковая компрессионная высота, высота самого поршня различается меньше чем на 3 мм, но вот жаровой пояс у новых моторов М272 составляет всего 5 мм против 7,5 мм у М112. При прочих факторах это означает заметно худшие условия работы поршневых колец: они находятся в гораздо более горячей зоне. А еще маслофорсунки на моторе М272 имеют меньший расход масла, что явно не лучшим образом сказывается и на температуре поршня и, опять же, на условиях работы поршневых колец.

И снова отличия вроде бы невелики, но в сочетании с большим количеством частиц износа в картере мотора из-за износа ГРМ, вероятностью разгерметизации впускного коллектора или отрыва его заслонок, более быстрым износом сальников клапанов из-за повышенной температуры, ресурс поршневой группы сокращается в два-три раза, а число отказов и вовсе в несколько раз.

Первый в мире авиационный двигатель с алюминиевыми цилиндрами.

На самом деле статья о мелкозернистом корундовом покрытии, которое применимо в двигателестроении.

Не секрет, что окись алюминия — корунд, один из самых прочных материалов. А сам по себе алюминий гораздо пластичнее. Алюминий чистотой 9,999% можно штамповать чуть ли не при комнатной температуре. При этом с очень низкой твердость. А вот окись алюминия — Корунд (Al2O3) (Рубин и Сапфир его близкие родственники) уже другая история, твердость уже 9 единиц по Шкале Мооса. Что объединяет алюминий и окись алюминия — отличная теплопроводность. Из сапфиров даже делают радиаторы охлаждения.

Соблазн делать алюминиевый блок велик, и обоснован. Алюминиевый блок можно сделать в разы меньше, чем у чугунный, он лучше прогревается, у него меньше напряжения в сопряжении блока и головки цилиндров.
Но есть сложности —
Алюминий мягок, что делать? Вставим чугунную гильзу. Но «мокрая» посадка гильзы не обеспечивает достаточной жесткости, а «сухая» гильза, которую заливают в блок на этапе отливки или штамповки, обходится дорого. И в любом случае чугун ухудшает теплопередачу и тепловой зазор приходится оставлять большим из-за разного коэффициента расширения металлов. Со временем появляются трещины из-за тепловых перепадов. Если на автомобиле это отказ связанный с протечкой блока не приведет к значимому ЧП, то в авиации ответственность выше.

Читать еще:  Что такое стационарная работа двигателя

Хорошо, нанесем покрытие.
Покрытие Никасил — никель + карбид кремния (твердость 9,5), разрушается под действуем сернистых соединений.
Покрытие Алюсил — алюминиевокремниевый сплав (твердость кремния 6,5-7), содержащий около 78 % алюминия и 12 % кремния, боится перегревов и не обладает достаточной твердостью.

С корундом довольно давно экспериментируют(примерно с 1980 года по прессе) и делают, например, покрытие поршней. Но такое покрытие наносится плазменным методом. Но почему то не получило широкое распространение. http://strannik-v.ru/topic1230.html

Что же достигли сейчас? Новый метод «Плазменно-электролитическое оксидирование»

Во первых такое покрытие весьма недорого. Во вторых охватывается широкий диапазон износостойкости и твердости, что позволяет разработчикам получать нужные характеристики одним методом на одном оборудовании.

Процесс ПЭО:

Описание ПЭО для ЛЛ.
Плазменно-электролитическое оксидирование — вид поверхностной обработки, позволяющий получать твёрдые износостойкие покрытия на различных алюминиевых сплавах.

Исторически происходит из традиционного анодирования, при повышении формующего напряжения до появления на обрабатываемой поверхности микроразрядных плазменных пробоев.

Условия, возникающие в окресности микроразряда, спобствуют физико-химическому превращению оксидной плёнки с образованием высокотемпературных фаз. В частности, при определённых условиях на поверхности алюминиевых сплавов образуется композитный слой, обогащённый высокотвёрдым «корундом» (альфа форма оксида алюминия) в составе более мягкой алюмо-силикатной матрицы. Сочетание высокой твёрдости корунда с эластичностью алюмосиликатной матрицы обеспечивает экстремально высокую износостойкость таких покрытий.

Предельные характеристики покрытий:

• толщина износостойких, мкм: 70 — 500 мкм

• толщина адгезионных, мкм: 5 — 50 мкм

• микротвёрдость: до 22 ГПа

• адгезия: до 340 МПа

• Ктрения по стали: 0,02-0,01

(при смазке водой и нагрузке 20 кгс/см2)

• износостойкость против WC-Cu-Ni: 2-2,5 раза

Области применения:

Части велосипедов и мотоциклов. Звёзды, шкивы вариатора скутера, цилиндры, поршни;

Направляющие плоскости, полозья, ролики, шкивы, элементы прядильно-ткацкого оборудования;

Крыльчатки компрессоров и насосов, работающих с абразивными жидкостями (скважинная жидкость, шликер, пульпа и др.);

Прокатные вальцы, фильеры, детали экструзионного оборудования;

Пары трения, штоки, уплотнители;

Натяжители волокон различной природы, проволоки;

Антиэррозионная обработка газоразрядного канала ионных лазеров;

Подслой, обеспечивающий высокую адгезию с клеями, лаками, смолами, эмалями;

Другие области, требующие высокой износоустойчивости при умеренной общей нагрузке (определяется прочностью алюминиевой основы).

Наличие оборудования для нанесения.
Да, уже производится — http://www.mdo-peo.com/

Красная зона это новое покрытие — большой диапазон износостойкости, с твердостью поверхности в широком диапазоне.

Кольца с никасила на чугун?

Сообщение Vladv » 22 окт 2016, 22:18

в интернете попадалось мнение, что кольца для никасилового покрытия не ходят на чугунных гильзах.
Кто-то может подтвердить или опровергнуть такое утверждение?

Дело в том что необходимо подобрать кольца для гильзовки, а подходят как раз с никасилового двигателя, поэтому обратился за советом.
спасибо.

Re: Кольца с никасила на чугун?

Сообщение Николай Грязев » 22 окт 2016, 22:39

Re: Кольца с никасила на чугун?

Сообщение Vladv » 22 окт 2016, 22:50

Re: Кольца с никасила на чугун?

Сообщение ISerge » 28 окт 2016, 14:57

Re: Кольца с никасила на чугун?

Сообщение mexhanicus » 28 окт 2016, 16:48

Re: Кольца с никасила на чугун?

Сообщение mexhanicus » 28 окт 2016, 16:50

Re: Кольца с никасила на чугун?

Сообщение ISerge » 31 окт 2016, 16:33

Что значит кольца продавят никасил? Корбид кремния вообще то прочнее чугуна. В алюсиле тоже кремний. На сколько я понял, кольца бывают с разным натягом, но зависит это от модели колец, а не от материала по которому они будут работать.

А кольца после перегрева вообще не работают.

Re: Кольца с никасила на чугун?

Сообщение AB-Engine » 31 окт 2016, 23:18

Че то вы, господа-товарисчи, совсем не в теме .

Покрытие типа Никасил — никель с карбидом кремния, зверски твердая вещь. Чтобы была антифрикционная пара, колечки должны быть несколько мягче. Поэтому особо твердых покрытий типа хрома с никасилом не применяют — не живут они там, курилки . На старых моторах верхнее кольцо было вообще без покрытия, потом добавили нечто не вполне внятное, но все равно — это не такое твердое покрытие, как на чугуне. Отсюда вывод — для работы по чугуну в оригинальном комплекте от Никасила можно использовать только 2-е и 3-е кольца, а 1-е надо заменить .

Технология типа Алюсил (Силумал) — ее постоянно путают с Никасилом. Это совершенно мягкая весчь, голимый алюминий, у которого на поверхности много зерен кремния. А поскольку кремень — он и в Африке, технология дает неплохую износостойкость при работе хромированных колец по кремнию. Что фактически означает — для работы по чугуну в оригинальном комплекте от Алюсила ничего не надо менять .

Nikasil и Alusil

Тонкостенные покрытия (никасиловое или алюсиловое покрытие) в теории такой метод имел только положительные стороны, но на практике все оказалось куда плачевнее. Официальная версия производителей: “Сера, находящаяся в топливе, вступает в реакцию с покрытием и уничтожает его”.

Скорее всего, технология с покрытием Nikasil оказалась дорогостоящей и трудоемкой, с высоким процентом брака, который списали на высокосернистый бензин. Вторая теория гласит о том, что Nikasil и Alusil прочное, но тонкое покрытие, находящееся на алюминиевом сплаве блока и при высоких температурах просто-напросто вдавливается в алюминий.

Чугунный блок

Большинство автопроизводителей идут по пути наименьшего сопротивления и с каждым годом стараются уменьшить вес производимых автомобилей. И замена чугунного двигателя, к слову, он в три раза тяжелее алюминиевого, не заставила себя долго ждать.

Чугунный блок является очень прочным элементом, отличается низким коэффициентом трения между стенками цилиндра и поверхностью поршня. Ремонтопригодность – это второе имя чугунного блока. Стенки цилиндра восстанавливаются при помощи расточки и установки поршней ремонтного размера

Приложения

Порше начал использовать Никасил в 1970 г. 917 гоночный автомобиль, а позже 1973 г. 911 RS. Porsche также использовал его на серийных автомобилях, но на короткое время перешел на Алусил за счет экономии затрат на их базу 911. Цилиндры Nikasil всегда использовались для 911 Turbo и модели RS. Алюминиевые цилиндры с покрытием Nikasil позволили Porsche строить двигатели с воздушным охлаждением у которого был самый высокий конкретный выход любого двигателя своего времени. Никасил до сих пор используется в 911-х.

Никасил был очень популярен в 90-е годы. Его использовали такие компании, как BMW, Ducati, Ягуар и Moto Guzzi в их новые семейства двигателей. Тем не менее сера Обнаруженный в большей части низкокачественного бензина в мире, некоторые цилиндры Nikasil со временем выходили из строя, что приводило к дорогостоящим отказам двигателя. [3]

Никасил или аналогичные покрытия под другими торговыми марками также все еще широко используются в гоночных двигателях, в том числе в двигателях. Формула один и ChampCar. Suzuki использует запатентованное покрытие никель-фосфор-карбид кремния под торговой маркой SCEM (композитный электрохимический материал Suzuki) для максимального увеличения размера цилиндра и улучшения рассеивания тепла в корпусе. TU250X, Хаябуса и другие мотоциклы. [4]

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector