Что такое двигатель pde
Импульсный детонационный двигатель — Pulse detonation engine
А импульсный детонационный двигатель (PDE) является разновидностью движение система, которая использует детонационные волны к гореть топливо и окислитель смесь. [1] [2] Двигатель работает в импульсном режиме, потому что смесь необходимо обновлять в камера сгорания между каждой детонационной волной и следующей. Теоретически PDE может работать от дозвуковой до гиперзвуковой скорость полета примерно Мах 5. Идеальная конструкция PDE может иметь термодинамическую эффективность выше, чем другие конструкции, такие как турбореактивные двигатели и турбовентиляторы потому что волна детонации быстро сжимает смесь и добавляет тепло при постоянном объеме. Как следствие, движущиеся части подобно компрессорные катушки не обязательно требуются в двигателе, что может значительно снизить общий вес и стоимость. PDE рассматривались в качестве силовых установок с 1940 года. [3] Ключевые вопросы для дальнейшего развития включают быстрое и эффективное смешивание топлива и окислителя, предотвращение самовоспламенение, а также интеграция с впускным отверстием и соплом.
На сегодняшний день никаких практических PDE не было запущено в производство, но было построено несколько испытательных двигателей, и один был успешно интегрирован в низкоскоростной демонстрационный самолет, который совершал продолжительный полет на PDE в 2008 году. В июне 2008 года Агентство перспективных оборонных исследовательских проектов (DARPA) обнародована Blackswift, который должен был использовать эту технологию для достижения скорости до 6 Махов. [4] Однако вскоре, в октябре 2008 года, проект был закрыт.
BLDC (БК мотор) — что, как, почему.
- Версия для печати
BLDC (БК мотор) — что, как, почему.
Сообщение #1 Strock » 23 фев 2018, 16:09
Всем здравствуйте! Итак, предлагаю обсудить и разобраться в сути BLDC моторов (бесколлекорных электродвигателей с постоянными магнитами). Такими движками можно оборудовать различный транспорт от скейтборда и самоката, до полноценного авто на электротяге. да и не только электротранспорт. А потому было бы ооочень интересно узнать методы расчетов, формулы и пр., таких движков как для самостоятельной сборки оного с нуля, так и исходя из имеющегося железа. Например есть в наличии статор, то какие характеристики с него можно получить?! Как их получить?! И самое главное помимо расчетов железа, не помешало бы разобрать электронную составляющую — контролёры, инверторы и др. Т.к. эти двигатели и электроника управления ими тесно связаны.
Я в этом полный дуб, потому хотелось для себя разобраться, понять и научится строить БК моторы.
Тема создана в связи с наличием велика, статора, подходящего для создания БК мотора и желания установить последний на велосипед.
Надеюсь на ваше понимание и помощь! Вместе, думаю, разберемся, а выкладки по этой теме могут пригодится многим
Отправлено спустя 16 минут 51 секунду:
BLDC — двигатели бесколлекторные постоянного тока и ч постоянными магнитами. Имеют три выхода с обмоток и являются трезфазными двигателями. А потому для их работы необходима электронная система управленя.
Бывают двух видов:
Inranner — классический вид, статор снаружи и ротор с магнитами внутри. Обычно высокооборотных.
Outranner — когда статор внутри и ротор с магнитами с наружи.
BLDC (БК мотор) — что, как, почему.
Сообщение #2 T-Duke » 23 фев 2018, 16:27
Как тот, кто уже много лет занимается этой тематикой, хочу сказать, что нужно еще правильно классифицировать моторы.
Английская аббревиатура BLDC говорит, что это просто Двигатель постоянного тока без щеток. Иными словами это бесколлекторный двигатель в понимании механического коллектора. Но без коллектора много типов двигателей с постоянными магнитами.
Поэтому принято называть именно BLDC двигатели с трапецеидальной формой тока. А двигатели которые питаются синусоидальным током, относят к другим подклассам — например PMSM.
Так же и режимы работы разные. Исконные BLDC работают в так называемом режиме блочной коммутации. То есть на обмотки подается не синус, а просто два состояния — включена обмотка, или выключена. При работе такой двигатель создает характерный тракторный шум. Можно двигатель питать от синусоидального контроллера. Их еще называют векторными. Тогда двигатель вертится плавно, без рывков и тракторного шума.
Следует отметить, что как правило на рынке не BLDC двигатели, а PMSM двигатели. Разница у них в конструкции магнитной системы. Именно BLDC двигатели заточены под работу с блочной коммутацией. У них рывки при переходе полюсов меньше. Если же запустить в блочном режиме синусоидальный двигатель, то он дергает сильнее, чем исконный BLDC. То есть пульсация крутящего момента у него выше. На видео как раз двигатель типа PMSM работающий в режиме BLDC двигателя.
Китайцы делают в основном PMSM двигатели для транспорта. Их проще делать. Поэтому родной режим работы таких двигателей не BLDC, а синусоидальный. и правильный контроллер к ним — синусоидальный (векторный).
Но конечно двигатели работают в обеих режимах. Мне лично нравится синусоидальный плавный режим работы. Именно это направление я и развивал для себя.
Первый полет с двигателем PDE
Первый известный полет самолета с импульсным детонационным двигателем состоялся в г. Воздушный и космический порт Мохаве 31 января 2008 г. [6] Проект разработан Исследовательская лаборатория ВВС и Innovative Scientific Solutions, Inc.. Самолет, выбранный для полета, был сильно модифицирован. Масштабированные композиты Long-EZ, названный Borealis. [7] Двигатель состоял из четырех трубок, производящих импульсные детонации с частотой 80 Гц, создавая тягу до 200 фунтов (890 ньютонов). Многие виды топлива рассматривались и тестировались разработчиками двигателей в последние годы, но усовершенствованный октан был использован для этого полета. Для облегчения взлета Long-EZ использовалась небольшая ракетная система, но PDE работала самостоятельно в течение 10 секунд на высоте примерно 100 футов (30 м). Очевидно, что этот полет проходил на низкой скорости, тогда как привлекательность концепции двигателя PDE заключается в большей степени на высоких скоростях, но демонстрация показала, что PDE может быть интегрирован в раму самолета, не испытывая структурных проблем из-за взрывных волн 195-200 дБ. . Больше полетов модифицированного Long-EZ не планируется, но успех, вероятно, приведет к увеличению финансирования исследований PDE. Сам самолет перенесен в Национальный музей ВВС США для отображения. [8]
Импульсные форсунки
Основная работа PDE аналогична работе импульсный реактивный двигатель. В импульсной струе воздух смешивается с топливом, образуя горючую смесь, которая затем воспламеняется в открытой камере. Получающееся сгорание значительно увеличивает давление смеси примерно до 100 атмосфер (10 МПа), [5] который затем расширяется через сопло для тяги.
Чтобы смесь выходила сзади и тем самым толкала самолет вперед, используется серия заслонок, закрывающих переднюю часть двигателя. Тщательная настройка воздухозаборника гарантирует, что заслонки закрываются в нужное время, чтобы заставить воздух двигаться в одном направлении только через двигатель. В некоторых конструкциях импульсных струй использовалась настроенная резонансная полость для обеспечения действия клапана через воздушный поток в системе. Эти конструкции обычно выглядят как U-образная трубка, открытая с обоих концов.
В любой системе у импульсной струи есть проблемы в процессе сгорания. Когда топливо сгорает и расширяется, создавая тягу, оно также выталкивает оставшийся несгоревший заряд назад, из сопла. Во многих случаях часть заряда выбрасывается перед горением, что вызывает знаменитый след пламени, видимый на Летающая бомба Фау-1 и другие импульсные форсунки. Даже находясь внутри двигателя, объем смеси постоянно меняется, что неэффективно превращает топливо в полезную энергию.
Все штатные реактивные двигатели и большинство ракетных двигателей работают на дефлаграция топлива, то есть быстрое, но дозвуковой горение из топливо. В настоящее время активно разрабатывается концепция импульсного детонационного двигателя для создания реактивного двигателя, работающего на сверхзвуковой детонация топлива. Поскольку сгорание происходит очень быстро, заряд (топливно-воздушная смесь) не успевает расшириться во время этого процесса, поэтому оно происходит почти под водой. постоянный объем. Сжигание постоянного объема более эффективно, чем конструкции с открытым циклом, такие как газовые турбины, что приводит к большему эффективность топлива.
Поскольку процесс сгорания происходит так быстро, механические заслонки трудно установить с требуемой производительностью. Вместо этого PDE обычно используют серию клапанов, чтобы тщательно рассчитать время процесса. В некоторых конструкциях PDE от General Electric, заслонки устраняются благодаря тщательному расчету времени, используя разницу давлений между различными частями двигателя, чтобы гарантировать, что «выстрел» выбрасывается назад. [ нужна цитата ]
Другой побочный эффект, еще не продемонстрированный на практике, — время цикла. Традиционная импульсная струйная печать обеспечивает максимальную скорость около 250 импульсов в секунду из-за продолжительности цикла механических заслонок, но цель PDE — тысячи импульсов в секунду, [ нужна цитата ] настолько быстро, что с инженерной точки зрения он практически непрерывен. Это должно помочь сгладить иначе сильно вибрирующий импульсный реактивный двигатель — много небольших импульсов создадут меньший объем, чем меньшее количество больших импульсов при той же чистой тяге. К сожалению, взрывы во много раз громче горящих.
Основная трудность с импульсным детонационным двигателем — запуск детонации. Хотя можно запустить детонацию непосредственно с помощью большой искры, количество потребляемой энергии очень велико и непрактично для двигателя. Типичное решение — использовать переход от дефлаграции к детонации (DDT), то есть начать высокоэнергетическое горение и заставить его разогнаться по трубе до точки, где она станет достаточно быстрой, чтобы превратиться в детонацию. [ нужна цитата ] В качестве альтернативы детонация может быть направлена по кругу, а клапаны гарантируют, что только максимальная пиковая мощность может попасть в выхлоп. Так же система взрыва импульсного сжатия может применяться для решения проблемы инициации.
Этот процесс намного сложнее, чем кажется, из-за сопротивления, с которым сталкивается продвигающийся волновой фронт (аналогично волновое сопротивление). ДДТ возникает гораздо быстрее, если в трубке есть препятствия. Наиболее широко используется «Щелкин спираль», который предназначен для создания наиболее полезных вихрей с наименьшим сопротивлением движущейся смеси топлива / воздуха / выхлопных газов. Вихри приводят к разделению пламени на несколько фронтов, некоторые из которых движутся назад и сталкиваются с другими фронтами, а затем ускоряются впереди них.
Такое поведение сложно смоделировать и предсказать, и исследования продолжаются. Как и в случае с обычными импульсными струями, существует два основных типа конструкций: клапанные и бесклапанные. Конструкции с клапанами сталкиваются с теми же трудными для решения проблемами износа, что и их эквиваленты для струйной печати. Бесклапанные конструкции обычно основаны на отклонениях в воздушном потоке для обеспечения одностороннего потока, чего очень трудно добиться с помощью обычного ДДТ.
НАСА поддерживает программу исследований PDE, направленную на высокую скорость, около Мах 5, гражданские транспортные системы. [ нужна цитата ] Однако большая часть исследований PDE носит военный характер, поскольку двигатель может быть использован для разработки нового поколения высокоскоростных двигателей большой дальности. самолет-разведчик который будет летать достаточно высоко, чтобы быть вне зоны досягаемости любой существующей системы ПВО, при этом предлагая дальность полета значительно больше, чем у СР-71, что потребовало использования большого танкерного флота поддержки.
В то время как большинство исследований посвящено высокоскоростному режиму, новые конструкции с гораздо более высокими частотами импульсов, составляющими сотни тысяч, работают хорошо даже на дозвуковых скоростях. В то время как традиционные конструкции двигателей всегда включают в себя компромиссы, ограничивающие их диапазон «наилучших скоростей», PDE, похоже, превосходит их на всех скоростях. Обе Пратт и Уитни и General Electric теперь у них есть активные исследовательские программы PDE в попытке коммерциализировать проекты. [ нужна цитата ]
Основные трудности в импульсных двигателях детонации заключаются в получении ДДТ без необходимости использования трубки достаточно длинной, чтобы сделать ее непрактичной и вызывающей сопротивление летательного аппарата (добавление U-образного изгиба в трубку гасит детонационную волну); снижение шума (часто описывается как звук отбойного молотка); и гашение сильной вибрации, вызванной работой двигателя.
Топливо поступает на всасывающий фильтр (3) где из него удаляются загрязнения в 1 микрон. Калибр фильтра 10 микрон.
Продвигаясь к насосу низкого давления (5) дизельное топливо проходит через охладитель электронного блока (1), таким образом, охлаждая его. Далее топливо поступает в насос низкого давления (5).
Насос низкого давления (5) повышает давление топлива до 9-12 бар и направляет его к насосу высокого давления (7). Однако перед попаданием в насос высокого давления дизельное топливо доочищается в напорном фильтре (4) имеющем калибр 3 микрона.
Наконец топливо достигло насоса высокого давления (7). В насосе высокого давления давление топлива возрастает и может достигать 500 — 2500 бар. Рабочее давление регулируется с помощью количества топлива, которое впускной дозирующий клапан (6) пропускает к насосу высокого давления (7). Управляет дозирующим клапаном (6) электронный блок (1), постоянно измеряя давление топлива в гидроаккумуляторе (8) с помощью датчика (10).
И так вернемся к насосу высокого давления. Топливо с насоса высокого давления (7) поступает в гидроаккумулятор (8) и к форсункам (11). Благодаря этому все форсунки находятся под постоянным высоким давлением. Запаса топлива в гидроаккумуляторе всегда хватает, не зависимо от оборотов двигателя. Давление в гидроаккумуляторе, как было сказано ранее, постоянно измеряется датчиком давления (10) и корректируется электронным блоком (1) по средствам впускного дозирующего клапана (6). Если давление топлива превысит предельное значение 3000 бар откроется механический предохранительный клапан (9) и возвратит топливо обратно в бак через возвратный коллектор (12).
Управляемые электронным импульсом форсунки (11) подают порцию топлива в цилиндры двигателя. Количество впрыскиваемого топлива зависит от времени открытия и может с высокой точностью быть рассчитано блоком (1), так как у форсунки отсутствует механическая связь с распределительным валом двигателя, а давление топлива всегда прогнозируемо и измеряется датчиком (10). Это одна из отличительных особенностей системы XPI (Common Rail) перед существующими ранее дизельными топливными системами.
Еще одна особенность дизельной системы XPI (Common Rail) это многократный впрыск. Небольшое количество топлива, впрыскивается форсункой в цилиндр двигателя, непосредственно перед основным впрыском. Благодаря этому снижается шум работы двигателя. Затем происходит основной впрыск топлива в цилиндры двигателя. И завершает цикл небольшой последующий впрыск, который способствует снижению количества сажи и оксидов азота NOx.
Излишки топлива, как и в традиционных топливных системах, возвращаются обратно в бак, через возвратный коллектор (12). Если Вы внимательно знакомились с работой топливной системы, то у Вас наверное возник вопрос как через возвратный коллектор (12) может возвращаться излишки топлива с форсунок (11) с мизерным давлением и топливо с предохранительного клапана (9), которое в 1000 разы выше?
Просто эти два канала разделены внутри возвратного коллектора (12) однако имеют общий выход.
Подводя итог хотелось выделить преимущества топливной системы XPI (Common Rail):
- Момент впрыска и длительность впрыска не зависят от положения распределительного вала;
- Давление впрыска можно регулировать независимо от частоты вращения двигателя и количества впрыскиваемого топлива;
- Клапанный механизм стал проще в виду отсутствия толкателей для форсунок;
- Возможность многократного впрыска.
Однако рассмотренная топливная система очень требовательна к качеству топлива. Низкого качества топливо способно повредить детали форсунки и топливного насоса. К примеру, задающий клапан форсунки имеет ход 47 микрон (0.047мм). Грязь, попавшая в него, может привести к износу или заклиниванию. Такая же ситуация и с насосом высокого давления. Зазор между плунжером и цилиндром составляет 5 микрон (0.005мм).
Многие узлы топливной системы длительное время после остановки двигателя находятся под давлением примерно 2000 бар, что очень опасно. Поэтому при ремонте подобных систем важно соблюдение техники безопасности и понимание принципа ее работы.