Mio-tech-service.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое эфирный двигатель

Ионный двигатель

Ионный двигатель — отработанная на практике разновидность электрического ракетного двигателя [1] . Недостатком ионного двигателя является малая тяга (например разгон космического аппарата с весом автомобиля от 0 до 100 км/ч требует двух суток непрерывной работы ионного двигателя), которую невозможно увеличить из-за ограничений объемного заряда, однако продолжительное время функционирования ионного двигателя (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трех лет) позволяет за длительный промежуток времени разогнать космический аппарат небольшого веса до приличных скоростей [1] . Сфера применения: управление ориентацией и положением на орбите искусственных спутников Земли и главный тяговый двигатель небольшой автоматической космической станции [1] . Характеристики ионного двигателя: потребляемая мощность 1-7 кВт, скорость истечения 20-50 км/с, тяга 20-250мН, КПД 60-80 % [1] . Его рабочим телом является ионизированный газ (аргон, ксенон и т. п.).

Ионному двигателю в настоящее время принадлежит рекорд негравитационного ускорения космического аппарата в космосе без использования — Deep Space 1 смог увеличить скорость на 4,3 км/с, израсходовав 74 кг ксенона (но этот рекорд скорости в ближайшее время будет превзойден на 10 км/с космическим аппаратом Dawn) [1] . В американской лаборатории реактивного движения созданы ионные двигатели, способные непрерывно работать более 3 лет. Однако ионный двигатель не является самым перспективным типом электроракетного двигателя, поэтому данный рекорд скорости скорее всего будет превзойден холловским или магнитоплазмодинамическим двигателем [1] .

Схема действия ионного двигателя

Состояниеприменяется на практике
Потребляемая мощность1-7 кВт
Скорость истечения20-50 км/с
Тяга20-250мН
КПД60-80 %
Применениеуправление ориентацией и положением на орбите искусственных спутников Земли; главный тяговый двигатель небольшой автоматической космической станции

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Принцип работы

По своей сути, водородный двигатель схож с электрическим. Однако, весит такой литий-ионный аккумулятор в десятки раз меньше, чем установки привычных электромобилей. В данном случае, необходимость батареи обусловлена исключительно хранением накапливаемой энергии получаемой при рекуперативном торможении, а также холодном старте на быстрых оборотах.

Дело в том, что водородный двигатель не способен сразу запустить главный источник энергии. Для этого необходимо несколько минут, которые дают накопления в батареи. Что интересно, первым прототипам требовалось несколько часов, для начала работы. Однако, современные устройства способны в течении двух минут начать преобразовывать воздух и водород в пар, азот и электричество.

Большой проблемой остается рабочая температура запуска системы. Она напрямую зависит от воздуха окружающего мира. Поэтому, иногда для запуска может потребоваться целый час.

Баллоны вмещают 5 килограмм водорода. Этого достаточно для преодоления расстояния в 500 км. Малые объемы позволяют делать быструю заправку, всего за пару минут.

Виды двигателей внутреннего сгорания

Агрегаты классифицируются по ряду отличительных признаков, которые напрямую влияют на устройство двигателя или принцип работы.

  • Способ образования смеси в двигателе:внешнее образование смеси (карбюратор, газовый двигатель);
  • внутреннее образование.

Количество ходок поршня, прежде чем выполнится рабочий процесс двигателя:

  • процесс работы за 4 хода;
  • процесс работы за 2 хода.

Количество камер объёмного вытеснения в двигателе:

  • 1 камера вытеснения;
  • 2 камеры вытеснения;
  • много камер вытеснения.

Размещение камер объёмного вытеснения в двигателе:

  • в ряд, перпендикулярно горизонту, а так же под небольшим углом;
  • угол между осями камер вытеснения составляет 90°;
  • угол между осями камер вытеснения составляет 180°.

Отвод избыточной температуры в двигателе:

  • посредством обдува воздушными массами;
  • посредством обтекания потоком жидкости.

Питание двигателя горючим:

  • бензин;
  • солярка;
  • газ;
  • питаются несколькими видами горючего.

Отношение полного объёма камеры к объёму пространства сгорания:

  • показатель равен 12-18 единиц (высокая степень);
  • показатель равен 4-9 единицам (низкая степень).

Способ наполнения цилиндра двигателя:

  • без наддува, атмосферные двигатели, подача разряжением;
  • с использованием наддува, подача сжатием.
  • низкая угловая частота;
  • средняя угловая частота;
  • высокая угловая частота.

Много других методов, по которым отфильтровывают силовые установки.

Действия в камере объёмного вытеснения разбиты на процессы:

  1. Такт, это передвижение поршня из одного крайнего положения в другое крайнее положение, обобщённо, движение детали в одну сторону.
  2. Цикл, это количество тактов, которое совершает агрегат, выполняя работу. Как правило, значение равно двум или четырём.
  3. Процесс работы: совершение действий над содержимым камеры объёмного вытеснения. Запускаем субстанцию, сжимаем, сжигаем, выпускаем.

Трудности эксплуатации водородных ДВС

Главное препятствие на пути внедрения технологии – это стоимость получения водорода (Н2), а также комплектующих для его хранения и транспортировки. К примеру, для сохранения сжиженного состояния нужно поддерживать стабильную температуру -253º С. Наиболее доступный способ получения Н2 – это электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным этот процесс сможет сделать ядерная энергетика, которой также пытаются найти рациональную альтернативу. Транспортировка и хранение газа требуют использования дорогостоящих материалов и высококачественных механизмов. К другим недостаткам водородного топлива можно отнести:

  • взрывоопасность. В замкнутом пространстве достаточная для реакции концентрация гремучего газа может спровоцировать взрыв. Усугубить ситуацию способна высокая температура воздуха. Из-за высокой степени диффузности водорода существует риск попадания Н2 в выхлопной коллектор, где реакция с горячими выхлопными газами приведет к возгоранию смеси. Роторный двигатель, ввиду особенностей компоновки, является более предпочтительным для водородного автомобиля;
  • для хранения водорода требуется емкость большого объема, а также специальные системы, препятствующие улетучиванию Н2 и обеспечивающие защиту от механических деформаций. Если для автобусов, грузовиков либо водного транспорта такая особенность не играет большой роли, то легковые автомобили теряют ценные кубометры багажного отделения;
  • в режимах высокотемпературных нагрузок водород способен провоцировать разрушительное воздействие на детали цилиндропоршневой группы и моторное масло. Применение соответствующих сплавов и смазочных материалов ведет к удорожанию производства и эксплуатации двигателей, работающих на водороде.

История паровых машин, часть третья

«Regina Margherita»

Статья является продолжением написаного вот тут и тут.

Промышленная революция, произошедшая в начале 19 века, нуждалась в мощных и компактных двигателях. Такие характеристики, могли обеспечить двигатели работающие на повышенном давлений пара, о них и пойдёт речь.

Горизонтальная одноцилиндровая стационарная машина.

Благодаря первым паровым машинам появилась возможность приводить в действие различное металлообрабатывающие оборудование, токарные, фрезерные, сверлильные станки и т.д., которые обеспечили необходимое качество изготовления комплектующих для паровых двигателей высокого давления.

Ранние механизмы приводились в действие посредством водяных колёс, которые работали с весьма сомнительной точностью.

Первый «двигатель высокого давления» был построен в 1801 году английским инженером и конструктором Ричардом Тревитиком.

В 1801 году построил первый в истории паровоз «Puffing Devil», затем в 1802 году паровоз «Coalbrookdale» для одноимённой угольной компании.

В 1803—1804 Тревитик при помощи Дж. Стила построил паровоз «Pen-y-Darren», который оказался слишком тяжёлым для чугунных рельсов и не мог использоваться.

В 1803 году, в Гринвиче, взорвался один из насосов Тревитика и убил четыре человека. Этот инцидент был использован Болтоном и Уаттом заявившим что котлы высокого давления очень опасны, а их машины (использующие низкое давление) не представляют угрозы для людей.

В 1808 году построил паровоз более совершенной конструкции, развивавший скорость до 30 км./ч. Паровоз получил название «Catch Me Who Can» («Поймай меня, кто сможет»). Для рекламы паровоза Тревитик построил за свой счет кольцевую дорогу в парке, где соревновался в скорости с лошадьми и перевозил людей ради развлечения.
Не получив поддержки от крупных финансистов, Тревитик разорился уехал в Южную Америку — в Перу, после неудачного участия в испано-перуанской войне вернулся в Англию в 1827 году.

Ричард Тревитик умер 22 апреля 1833 года в Дартфорде (графство Кент) в полной нищете.

Характерной особенностью этой машины было то, что топка и дымовая труба располагалась внутри котла, это значительно ускоряло время закипания воды. Благодаря такой конструкции удалось уменьшить размеры машины и увеличить КПД.

В 1803 году английский инженер Артур Вульф получил патент на улучшение котла для производства пара высокого давления, а в 1804 году запатентовал свое самое известное изобретение — компаунд-машину.

Стоит сказать, что до Вульфа, в 1781 году компаунд-машину запатентовал английский инженер Джонатан Хорнблауэр, но не смог построить её из-за судебных тяжб с Джеимсом Уаттом.

Компаунд-машина имеет два (или больше) рабочих цилиндра разного диаметра. Свежий пар из котла поступает в меньший цилиндр высокого давления (HP), отработав там (первое расширение), пар перепускается в больший цилиндр (второе расширение) низкого давления (LP).
Такая схема работы позволяет более полно использовать энергию пара и повысить коэффициент полезного действия двигателя.

Компаунды конструктивно имели два варианта:

Цилиндры располагались последовательно на общем длинном штоке (тандем-машина). (рис. а)
Цилиндры располагались параллельно один рядом с другим (перекрёстная схема). (рис. b)

Схема вертикальной компаунд-машины с тройным расширением пара:

Двухцилиндровая компаунд-машина Вульфа, построенная в 1858 году.

Цилиндры расположены вертикально, левый (поменьше) высокого давления, правый (побольше) низкого. В целях снижения потерь тепла, они заключены в деревянные рубашки.

Работала при давлении 36 psi (2,4 bar).

Одна из машин использующая схему Вульфа, находится в Англии, на водонапорной станции «Claymills Pumping Station». В рабочем состоянии.

Слева колесо (маховик), по центру цилиндры:

Построена в 1885 году компанией «Gimson and Company».

В 1822 году американский изобретатель Джейкоб Перкинс, построил экспериментальную паровую машину работающую на давлении до 30 бар.

Для технологий того времени, примениение столь высокого давления было слишком опасно, поэтому подобные решения нашли применение только спустя много лет.
Однако другая его идея — котёл с расположенными внутри водогрейными трубами, стала примером для всех последующих котлов.

Раскалённые газы, проходя по трубам внутри котла, очень эффективно разогревали воду.

Одно из важнейших событий в области паростроения произошло в 1824 году.

Французкий учёный Сади Карно в сочинении «О движущей силе огня и о машинах, способных развивать эту силу» установил максимальный коэффициент полезного действия тепловых машин. Цикл Карно.

Это событие принято считать рождением — Термодинамики.

В 1839 году, немецкий изобретатель Эрнст Альбан, сконструировал одноцилиндровый паровой двигатель высокого давления с качающимся цилиндром.

Идея заключалась в том, чтобы шток поршня крепился непосредственно к кривошипному механизму.

Широкого распространения такие двигатели не получили, однако иногда применялись в судостроении.

Качающийся паровой двигатель, построен в 1853 году компанией «J.&A. Blyth of London» для австрийского парохода «Orsova» Science Museum (London)

Дальше описывать отдельных изобретателей не имеет смысла, так как паровые машины начали строиться повсеместно.
Поэтому предлагаю просто полюбоваться этими великолепными механизмами.

Горизонтальные паровые машины
Экотехнический музей музей в Праге. Насосная станция.

Паровая машина «Corliss»

Тауэрский мост

Раньше поднимала и опускала мост, сейчас это делают гидравлические домкраты. Иногда машину запускают в демонстрационных целях.

Вертикальные компаунд-машины
Машина тройного расширения

Стояла на военном катере.

«Tangye»

Kempton Great Engines

Общая высота машины 19 метров, мощность 1008 л.с., вес 800 тонн.

Двигатели «Титаника»

На «Титанике» стояли две четырёхцилиндровые компаунд-машины вращающие боковые винты и одна паровая турбина, вращающая средний винт.

Нынче выглядят так.

На «Титанике» стояло 29 котлов.

Современная паровая турбина

На атомных электростанциях, такие штуки крутят генераторы.

На этом наверно всё.

Необычные паровые устройства.
Паровозы…
Паровые автомобили…
Пароходы…
Паровые самолёты.

Итоги

Выбирать автомобиль с турбированным или атмосферным агрегатом стоит, исходя из своих личных предпочтений и возможностей. У каждого из этих типов моторов есть свои плюсы и минусы. Турбодвигатель будет мощнее и динамичнее, однако требователен в уходе и обходится дороже. Атмосферный двигатель не такой мощный, зато гораздо дешевле в плане эксплуатации и ремонта.

В наличии в компании Favorit Motors имеется множество разных моделей автомобилей как с атмосферными двигателями, так и с турбированными. Компетентный персонал поможет подобрать автомобиль, исходя из пожеланий и предпочтений каждого клиента.

Как турбированный, так и атмосферный силовой агрегат со временем может начать работать с перебоями или вообще отказать. Современные модели автомобилей оснащены высокотехнологичными электронными системами управления двигателем, поэтому диагностику и ремонт моторов следует выполнять только в специализированных автосервисах.

Автосервис Favorit Motors оснащен полным комплексом диагностического и ремонтного оборудования для диагностики и устранения неисправностей турбированных и атмосферных силовых агрегатов. Для обслуживания и ремонта здесь используются только качественные сертифицированные запчасти, а мастера техцентра обладают многолетним опытом работ. Все операции выполняются в соответствии с технологическими картами заводов-изготовителей, что обеспечивает высокое качество и сжатые сроки ремонта. На все детали и ремонтно-восстановительные работы предоставляется гарантия.

Специалисты компании Favorit Motors напоминают, что своевременное регламентное обслуживание способно значительно продлить срок эксплуатации силового агрегата. Необходимо регулярно менять масло в соответствии с пробегом и устранять выявленные неисправности.

голоса
Рейтинг статьи
Читать еще:  Что такое дпрв в двигателе
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector