Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое импульсно детонационный двигатель

Импульсно-детонационный двигатель как прорывная технология России

В России собран образец импульсного детонационного двигателя. Новинка является настолько большим скачком вперед в развитии технологий, что его сравнивают с временами, когда на смену пропеллерам пришли реактивные двигатели.

США потребовали передать часть технологий под предлогом того, что была использована часть американского оборудования.

В чем же преимущества и новизна данного типа разработки?

Импульсные двигатель, в отличии от реактивного, работает не за счет сгорания топлива, а за счет его детонации.

Проще говоря, внутри него с высокой частотой происходят микро взрывы топливного вещества. Данный процесс труднокотролируем и этим объясняется тот факт, что он до сих пор не вошел в обиход. Однако, игра стоит свеч. Такой тип двигателя демонстрирует колоссально высокий коэффициент полезного действия. Именно этот двигатель станет толчком к развитию средств, двигающихся с гиперзвуковыми скоростями.

Ученые уже заявили, что эффект, который произведут импульсные двигатели на прогресс такой же, как было при изобретении реактивного двигателя. Практически мгновенно самолеты, летающие на винтовой тяге, потеряли актуальность.

Именно поэтому Россия уделяет особое внимание данным технологиям.

  • 2130 просмотров

Превосходство новых двигателей

Изучением и разработкой детонационных двигателей занимаются ведущие мировые ученые на протяжении 70 лет. Основной причиной, препятствующей созданию этого типа двигателей, является неконтролируемое самовозгорание топлива. Кроме того, на повестке дня стояли задачи по эффективному смешиванию горючего и окислителя, а также интеграции сопла и воздухозаборника.

  1. Способность развивать скорости в дозвуковом и гиперзвуковом диапазонах.
  2. Исключение из конструкции многих движущихся частей.
  3. Более низкая масса и стоимость силовой установки.
  4. Высокая термодинамическая эффективность.

Серийно данный тип двигатель не производился. Впервые был испытан на низколетящих самолетах в 2008 году. Детонационный двигатель для ракет-носителей был впервые испытан российскими учеными. Именно поэтому данному событию отводится столь большое значение.

Импульсные детонационные двигатели как будущее ракет и авиации

Прямоточный испульсный детонационный двигатель. Графика «Горение и взрыв»

Существующие двигательные установки для авиации и ракет показывают весьма высокие характеристики, но вплотную приблизились к пределу своих возможностей. Для дальнейшего повышения параметров тяги, создающего задел для развития авиационной ракетно-космической отрасли, необходимы другие двигатели, в т.ч. с новыми принципами работы. Большие надежды возлагаются на т.н. детонационные двигатели. Подобные системы импульсного класса уже испытываются в лабораториях и на летательных аппаратах.

Физические принципы

В существующих и эксплуатируемых двигателях на жидком топливе используется дозвуковое горение или дефлаграция. Химическая реакция с участием топлива и окислителя образует фронт, перемещающийся по камере сгорания с дозвуковой скоростью. Такое горение ограничивает количество и скорость реактивных газов, истекающих из сопла. Соответственно, ограничивается и максимальная тяга.

Альтернативой является детонационное горение. В этом случае фронт реакции перемещается со сверхзвуковой скоростью, образуя ударную волну. Подобный режим горения увеличивает выход газообразных продуктов и обеспечивает повышенную тягу.

Детонационный двигатель может быть выполнен в двух вариантах. Одновременно разрабатываются импульсные или пульсирующие двигатели (ИДД / ПДД) и ротационные / вращающиеся. Их отличие заключается в принципах горения. Ротационный двигатель поддерживает постоянную реакцию, а импульсный работает за счет последовательных «взрывов» смеси топлива и окислителя.

Импульсы образуют тягу

В теории, по своей конструкции ИДД не сложнее традиционного прямоточного воздушно-реактивного или жидкостного ракетного двигателя. Он включает камеру сгорания и сопловой аппарат, а также средства подачи топлива и окислителя. При этом накладываются особые ограничения на прочность и стойкость конструкции, связанные с особенностями работы двигателя.

Опытный самолет Long-EZ с ИДД. Фото National Museum of USAF
Во время работы форсунки подают в камеру сгорания топливо; окислитель подводится из атмосферы помощи воздухозаборного устройства. После образования смеси происходит воспламенение. За счет правильного подбора компонентов топлива и пропорций смеси, оптимального способа воспламенения и конфигурации камеры образуется ударная волна, движущаяся в направлении сопла двигателя. Текущий уровень технологий позволяет получить скорость волны до 2,5-3 км/с с соответствующим повышением тяги.

ИДД использует пульсирующий принцип работы. Это означает, что после детонации и выхода реактивных газов камера сгорания продувается, вновь наполняется смесью – и следует новый «взрыв». Для получения высокой и стабильной тяги этот цикл должен осуществляться с большой частотой, от десятков до тысяч раз в секунду.

Сложности и преимущества

Главным преимуществом ИДД является теоретическая возможность получения повышенных характеристик, обеспечивающих превосходство над существующими и перспективными ПВРД и ЖРД. Так, при той же тяге импульсный двигатель получается компактнее и легче. Соответственно, в тех же габаритах можно создать более мощную установку. Кроме того, такой двигатель проще по своей конструкции, поскольку не нуждается в части приборного оснащения.

ИДД работоспособен в широком диапазоне скоростей, от нулевых (при старте ракеты) до гиперзвуковых. Он может найти применение в ракетно-космических системах и в авиации – в гражданских и военных областях. Во всех случаях его характерные особенности позволяют получить те или иные преимущества перед традиционными системами. В зависимости от потребностей, возможно создание ракетного ИДД, использующего окислитель из бака, или воздушно-реактивного, принимающего кислород из атмосферы.

Впрочем, имеются существенные недостатки и затруднения. Так, для освоения нового направления приходится проводить различные достаточно сложные исследования и опыты на стыке разных наук и дисциплин. Специфический принцип работы предъявляет особые требования к конструкции двигателя и ее материалам. Ценой высокой тяги оказываются повышенные нагрузки, способные повредить или разрушить конструкцию двигателя.

ИДД для Long-EZ. Фото National Museum of USAF
Сложной задачей является обеспечение высокой скорости подачи топлива и окислителя, соответствующей необходимой частоте детонаций, а также выполнение продувки перед подачей топлива. Кроме того, отдельной инженерной проблемой является запуск ударной волны при каждом цикле работы.

Следует отметить, что к настоящему времени ИДД, несмотря на все усилия ученых и конструкторов, не готовы к выходу за пределы лабораторий и полигонов. Конструкции и технологии нуждаются в дальнейшей отработке. Поэтому пока не приходится говорить о внедрении новых двигателей в практику.

История технологии

Любопытно, что принцип импульсного детонационного двигателя впервые был предложен не учеными, но писателями-фантастами. К примеру, подлодка «Пионер» из романа Г. Адамова «Тайна двух океанов» использовала ИДД на водородно-кислородной газовой смеси. Схожие идеи фигурировали и в других художественных произведениях.

Научные изыскания по теме детонационных двигателей начались чуть позже, в сороковых годах, причем пионерами направления были советские ученые. В дальнейшем в разных странах неоднократно предпринимались попытки создания опытного ИДД, но их успех серьезно ограничивало отсутствие необходимых технологий и материалов.

31 января 2008 г. агентство DARPA министерства обороны США и Лаборатория ВВС начали испытания первой летающей лаборатории с ИДД воздушно-реактивного типа. Оригинальный двигатель установили на доработанном самолете Long-EZ от фирмы Scale Composites. Силовая установка включала четыре трубчатые камеры сгорания с подачей жидкого топлива и забором воздуха из атмосферы. При частоте детонаций 80 Гц развивалась тяга ок. 90 кгс, чего хватало только для легкого летательного аппарата.

Читать еще:  Что такое правая подушка двигателя

Российский ротационный детонационный двигатель «Ифрит». Фото НПО «Энергомаш»
Эти испытания показали принципиальную пригодность ИДД для применения в авиации, а также продемонстрировали необходимость совершенствования конструкций и повышения их характеристик. В том же 2008 г. опытный самолет отправили в музей, а DARPA и смежные организации продолжили работу. Сообщалось о возможности применения ИДД в перспективных ракетных комплексах – но пока они не разработаны.

В нашей стране тематика ИДД изучалась на уровне теории и практике. К примеру, в 2017 г. в журнале «Горение и взрыв» появилась статья об испытаниях детонационного прямоточного двигателя на газообразном водороде. Также продолжаются работы по ротационным детонационным двигателям. Создан и испытан РДД на жидком топливе, пригодный для использования на ракетах. Прорабатывается вопрос использования таких технологий в авиационных двигателях. В этом случае детонационная камера сгорания интегрируется в состав турбореактивного двигателя.

Перспективы технологии

Детонационные двигатели представляют большой интерес с точки зрения применения в разных областях и сферах. За счет ожидаемого прироста основных характеристик они могут, как минимум, потеснить системы существующих классов. Однако сложность теоретической и практической разработки пока не позволяет им дойти до использования на практике.

Впрочем, в последние годы наблюдаются положительные тенденции. Детонационные двигатели в целом, в т.ч. импульсные, все чаще появляются в новостях из лабораторий. Развитие этого направления продолжается, и в будущем сможет дать желаемые результаты, хотя сроки появления перспективных образцов, их характеристики и области применения пока остаются под вопросом. Однако сообщения последних лет позволяют смотреть в будущее с оптимизмом.

Импульсные форсунки

Основная работа PDE аналогична работе импульсный реактивный двигатель. В импульсной струе воздух смешивается с топливом, образуя горючую смесь, которая затем воспламеняется в открытой камере. Получающееся сгорание значительно увеличивает давление смеси примерно до 100 атмосфер (10 МПа), [5] который затем расширяется через сопло для тяги.

Чтобы смесь выходила сзади и тем самым толкала самолет вперед, используется серия заслонок, закрывающих переднюю часть двигателя. Тщательная настройка воздухозаборника гарантирует, что заслонки закрываются в нужное время, чтобы заставить воздух двигаться в одном направлении только через двигатель. В некоторых конструкциях импульсных струй использовалась настроенная резонансная полость для обеспечения действия клапана через воздушный поток в системе. Эти конструкции обычно выглядят как U-образная трубка, открытая с обоих концов.

В любой системе у импульсной струи есть проблемы в процессе сгорания. Когда топливо сгорает и расширяется, создавая тягу, оно также выталкивает оставшийся несгоревший заряд назад, из сопла. Во многих случаях часть заряда выбрасывается перед горением, что вызывает знаменитый след пламени, видимый на Летающая бомба Фау-1 и другие импульсные форсунки. Даже находясь внутри двигателя, объем смеси постоянно меняется, что неэффективно превращает топливо в полезную энергию.

Все штатные реактивные двигатели и большинство ракетных двигателей работают на дефлаграция топлива, то есть быстрое, но дозвуковой горение из топливо. В настоящее время активно разрабатывается концепция импульсного детонационного двигателя для создания реактивного двигателя, работающего на сверхзвуковой детонация топлива. Поскольку сгорание происходит очень быстро, заряд (топливно-воздушная смесь) не успевает расшириться во время этого процесса, поэтому оно происходит почти под водой. постоянный объем. Сжигание постоянного объема более эффективно, чем конструкции с открытым циклом, такие как газовые турбины, что приводит к большему эффективность топлива.

Поскольку процесс сгорания происходит так быстро, механические заслонки трудно установить с требуемой производительностью. Вместо этого PDE обычно используют серию клапанов, чтобы тщательно рассчитать время процесса. В некоторых конструкциях PDE от General Electric, заслонки устраняются благодаря тщательному расчету времени, используя разницу давлений между различными частями двигателя, чтобы гарантировать, что «выстрел» выбрасывается назад. [ нужна цитата ]

Другой побочный эффект, еще не продемонстрированный на практике, — время цикла. Традиционная импульсная струйная печать обеспечивает максимальную скорость около 250 импульсов в секунду из-за продолжительности цикла механических заслонок, но цель PDE — тысячи импульсов в секунду, [ нужна цитата ] настолько быстро, что с инженерной точки зрения он практически непрерывен. Это должно помочь сгладить иначе сильно вибрирующий импульсный реактивный двигатель — много небольших импульсов создадут меньший объем, чем меньшее количество больших импульсов при той же чистой тяге. К сожалению, взрывы во много раз громче горящих.

Основная трудность с импульсным детонационным двигателем — запуск детонации. Хотя можно запустить детонацию непосредственно с помощью большой искры, количество потребляемой энергии очень велико и непрактично для двигателя. Типичное решение — использовать переход от дефлаграции к детонации (DDT), то есть начать высокоэнергетическое горение и заставить его разогнаться по трубе до точки, где она станет достаточно быстрой, чтобы превратиться в детонацию. [ нужна цитата ] В качестве альтернативы детонация может быть направлена ​​по кругу, а клапаны гарантируют, что только максимальная пиковая мощность может попасть в выхлоп. Так же система взрыва импульсного сжатия может применяться для решения проблемы инициации.

Этот процесс намного сложнее, чем кажется, из-за сопротивления, с которым сталкивается продвигающийся волновой фронт (аналогично волновое сопротивление). ДДТ возникает гораздо быстрее, если в трубке есть препятствия. Наиболее широко используется «Щелкин спираль», который предназначен для создания наиболее полезных вихрей с наименьшим сопротивлением движущейся смеси топлива / воздуха / выхлопных газов. Вихри приводят к разделению пламени на несколько фронтов, некоторые из которых движутся назад и сталкиваются с другими фронтами, а затем ускоряются впереди них.

Такое поведение сложно смоделировать и предсказать, и исследования продолжаются. Как и в случае с обычными импульсными струями, существует два основных типа конструкций: клапанные и бесклапанные. Конструкции с клапанами сталкиваются с теми же трудными для решения проблемами износа, что и их эквиваленты для струйной печати. Бесклапанные конструкции обычно основаны на отклонениях в воздушном потоке для обеспечения одностороннего потока, чего очень трудно добиться с помощью обычного ДДТ.

НАСА поддерживает программу исследований PDE, направленную на высокую скорость, около Мах 5, гражданские транспортные системы. [ нужна цитата ] Однако большая часть исследований PDE носит военный характер, поскольку двигатель может быть использован для разработки нового поколения высокоскоростных двигателей большой дальности. самолет-разведчик который будет летать достаточно высоко, чтобы быть вне зоны досягаемости любой существующей системы ПВО, при этом предлагая дальность полета значительно больше, чем у СР-71, что потребовало использования большого танкерного флота поддержки.

В то время как большинство исследований посвящено высокоскоростному режиму, новые конструкции с гораздо более высокими частотами импульсов, составляющими сотни тысяч, работают хорошо даже на дозвуковых скоростях. В то время как традиционные конструкции двигателей всегда включают в себя компромиссы, ограничивающие их диапазон «наилучших скоростей», PDE, похоже, превосходит их на всех скоростях. Обе Пратт и Уитни и General Electric теперь у них есть активные исследовательские программы PDE в попытке коммерциализировать проекты. [ нужна цитата ]

Основные трудности в импульсных двигателях детонации заключаются в получении ДДТ без необходимости использования трубки достаточно длинной, чтобы сделать ее непрактичной и вызывающей сопротивление летательного аппарата (добавление U-образного изгиба в трубку гасит детонационную волну); снижение шума (часто описывается как звук отбойного молотка); и гашение сильной вибрации, вызванной работой двигателя.

Читать еще:  Что такое стационарная работа двигателя

Глава 1. Литературный обзор

Выбранная тема достаточно специфична. Информации по ней не много, а та, что есть сложна для восприятия. Большинство диссертаций, рефератов и других научных работ углубляются в выбранную тему, но не дают основ. Это стало основной проблемой на пути к раскрытию темы.

Основой теории ударных волн и детонации стал учебник Я.Б. Зельдовича «Теория детонации». Это единственный источник с последовательным изложением фундаментальной теории. Темы, по которым информации в работе Зельдовича не хватало были изучены по двум советским энциклопедиям: 1984 и 1988-1998 гг.

Общая информация о конструктивных схемах детонационных двигателей была почерпнута из сборника статей «Импульсные детонационные двигатели» под редакцией С.М. Фролова, где наиболее информативными оказались статьи о полетных испытаниях ракеты с импульсным детонационным двигателем, об особенностях применения детонации в двигательных установках и о космических приложениях детонационного двигателя.

Чертеж был сделан на основе модели, описанной в статье Т. Фудживара «Исследования импульсных детонационных двигателей в Японии».

Импульсные форсунки

Основная работа PDE аналогична работе импульсный реактивный двигатель. В импульсной струе воздух смешивается с топливом, образуя горючую смесь, которая затем воспламеняется в открытой камере. Получающееся сгорание значительно увеличивает давление смеси примерно до 100 атмосфер (10 МПа), [5] который затем расширяется через сопло для тяги.

Чтобы смесь выходила сзади и тем самым толкала самолет вперед, используется серия заслонок, закрывающих переднюю часть двигателя. Тщательная настройка воздухозаборника гарантирует, что заслонки закрываются в нужное время, чтобы заставить воздух двигаться в одном направлении только через двигатель. В некоторых конструкциях импульсных струй использовалась настроенная резонансная полость для обеспечения действия клапана через воздушный поток в системе. Эти конструкции обычно выглядят как U-образная трубка, открытая с обоих концов.

В любой системе у импульсной струи есть проблемы в процессе сгорания. Когда топливо сгорает и расширяется, создавая тягу, оно также выталкивает оставшийся несгоревший заряд назад, из сопла. Во многих случаях часть заряда выбрасывается перед горением, что вызывает знаменитый след пламени, видимый на Летающая бомба Фау-1 и другие импульсные форсунки. Даже находясь внутри двигателя, объем смеси постоянно меняется, что неэффективно превращает топливо в полезную энергию.

Все штатные реактивные двигатели и большинство ракетных двигателей работают на дефлаграция топлива, то есть быстрое, но дозвуковой горение из топливо. В настоящее время активно разрабатывается концепция импульсного детонационного двигателя для создания реактивного двигателя, работающего на сверхзвуковой детонация топлива. Поскольку сгорание происходит очень быстро, заряд (топливно-воздушная смесь) не успевает расшириться во время этого процесса, поэтому оно происходит почти под водой. постоянный объем. Сжигание постоянного объема более эффективно, чем конструкции с открытым циклом, такие как газовые турбины, что приводит к большему эффективность топлива.

Поскольку процесс сгорания происходит так быстро, механические заслонки трудно установить с требуемой производительностью. Вместо этого PDE обычно используют серию клапанов, чтобы тщательно рассчитать время процесса. В некоторых конструкциях PDE от General Electric, заслонки устраняются благодаря тщательному расчету времени, используя разницу давлений между различными частями двигателя, чтобы гарантировать, что «выстрел» выбрасывается назад. [ нужна цитата ]

Другой побочный эффект, еще не продемонстрированный на практике, — время цикла. Традиционная импульсная струйная печать обеспечивает максимальную скорость около 250 импульсов в секунду из-за продолжительности цикла механических заслонок, но цель PDE — тысячи импульсов в секунду, [ нужна цитата ] настолько быстро, что с инженерной точки зрения он практически непрерывен. Это должно помочь сгладить иначе сильно вибрирующий импульсный реактивный двигатель — много небольших импульсов создадут меньший объем, чем меньшее количество больших импульсов при той же чистой тяге. К сожалению, взрывы во много раз громче горящих.

Основная трудность с импульсным детонационным двигателем — запуск детонации. Хотя можно запустить детонацию непосредственно с помощью большой искры, количество потребляемой энергии очень велико и непрактично для двигателя. Типичное решение — использовать переход от дефлаграции к детонации (DDT), то есть начать высокоэнергетическое горение и заставить его разогнаться по трубе до точки, где она станет достаточно быстрой, чтобы превратиться в детонацию. [ нужна цитата ] В качестве альтернативы детонация может быть направлена ​​по кругу, а клапаны гарантируют, что только максимальная пиковая мощность может попасть в выхлоп. Так же система взрыва импульсного сжатия может применяться для решения проблемы инициации.

Этот процесс намного сложнее, чем кажется, из-за сопротивления, с которым сталкивается продвигающийся волновой фронт (аналогично волновое сопротивление). ДДТ возникает гораздо быстрее, если в трубке есть препятствия. Наиболее широко используется «Щелкин спираль», который предназначен для создания наиболее полезных вихрей с наименьшим сопротивлением движущейся смеси топлива / воздуха / выхлопных газов. Вихри приводят к разделению пламени на несколько фронтов, некоторые из которых движутся назад и сталкиваются с другими фронтами, а затем ускоряются впереди них.

Такое поведение сложно смоделировать и предсказать, и исследования продолжаются. Как и в случае с обычными импульсными струями, существует два основных типа конструкций: клапанные и бесклапанные. Конструкции с клапанами сталкиваются с теми же трудными для решения проблемами износа, что и их эквиваленты для струйной печати. Бесклапанные конструкции обычно основаны на отклонениях в воздушном потоке для обеспечения одностороннего потока, чего очень трудно добиться с помощью обычного ДДТ.

НАСА поддерживает программу исследований PDE, направленную на высокую скорость, около Мах 5, гражданские транспортные системы. [ нужна цитата ] Однако большая часть исследований PDE носит военный характер, поскольку двигатель может быть использован для разработки нового поколения высокоскоростных двигателей большой дальности. самолет-разведчик который будет летать достаточно высоко, чтобы быть вне зоны досягаемости любой существующей системы ПВО, при этом предлагая дальность полета значительно больше, чем у СР-71, что потребовало использования большого танкерного флота поддержки.

В то время как большинство исследований посвящено высокоскоростному режиму, новые конструкции с гораздо более высокими частотами импульсов, составляющими сотни тысяч, работают хорошо даже на дозвуковых скоростях. В то время как традиционные конструкции двигателей всегда включают в себя компромиссы, ограничивающие их диапазон «наилучших скоростей», PDE, похоже, превосходит их на всех скоростях. Обе Пратт и Уитни и General Electric теперь у них есть активные исследовательские программы PDE в попытке коммерциализировать проекты. [ нужна цитата ]

Основные трудности в импульсных двигателях детонации заключаются в получении ДДТ без необходимости использования трубки достаточно длинной, чтобы сделать ее непрактичной и вызывающей сопротивление летательного аппарата (добавление U-образного изгиба в трубку гасит детонационную волну); снижение шума (часто описывается как звук отбойного молотка); и гашение сильной вибрации, вызванной работой двигателя.

Импульсные форсунки

Основная работа PDE аналогична работе импульсный реактивный двигатель. В импульсной струе воздух смешивается с топливом, образуя горючую смесь, которая затем воспламеняется в открытой камере. Получающееся сгорание значительно увеличивает давление смеси примерно до 100 атмосфер (10 МПа), [5] который затем расширяется через сопло для тяги.

Читать еще:  Шатун двигателя мотоблока своими руками

Чтобы смесь выходила сзади и тем самым толкала самолет вперед, используется серия заслонок, закрывающих переднюю часть двигателя. Тщательная настройка воздухозаборника гарантирует, что заслонки закрываются в нужное время, чтобы заставить воздух двигаться в одном направлении только через двигатель. В некоторых конструкциях импульсных струй использовалась настроенная резонансная полость для обеспечения действия клапана через воздушный поток в системе. Эти конструкции обычно выглядят как U-образная трубка, открытая с обоих концов.

В любой системе у импульсной струи есть проблемы в процессе сгорания. Когда топливо сгорает и расширяется, создавая тягу, оно также выталкивает оставшийся несгоревший заряд назад, из сопла. Во многих случаях часть заряда выбрасывается перед горением, что вызывает знаменитый след пламени, видимый на Летающая бомба Фау-1 и другие импульсные форсунки. Даже находясь внутри двигателя, объем смеси постоянно меняется, что неэффективно превращает топливо в полезную энергию.

Все штатные реактивные двигатели и большинство ракетных двигателей работают на дефлаграция топлива, то есть быстрое, но дозвуковой горение из топливо. В настоящее время активно разрабатывается концепция импульсного детонационного двигателя для создания реактивного двигателя, работающего на сверхзвуковой детонация топлива. Поскольку сгорание происходит очень быстро, заряд (топливно-воздушная смесь) не успевает расшириться во время этого процесса, поэтому оно происходит почти под водой. постоянный объем. Сжигание постоянного объема более эффективно, чем конструкции с открытым циклом, такие как газовые турбины, что приводит к большему эффективность топлива.

Поскольку процесс сгорания происходит так быстро, механические заслонки трудно установить с требуемой производительностью. Вместо этого PDE обычно используют серию клапанов, чтобы тщательно рассчитать время процесса. В некоторых конструкциях PDE от General Electric, заслонки устраняются благодаря тщательному расчету времени, используя разницу давлений между различными частями двигателя, чтобы гарантировать, что «выстрел» выбрасывается назад. [ нужна цитата ]

Другой побочный эффект, еще не продемонстрированный на практике, — время цикла. Традиционная импульсная струйная печать обеспечивает максимальную скорость около 250 импульсов в секунду из-за продолжительности цикла механических заслонок, но цель PDE — тысячи импульсов в секунду, [ нужна цитата ] настолько быстро, что с инженерной точки зрения он практически непрерывен. Это должно помочь сгладить иначе сильно вибрирующий импульсный реактивный двигатель — много небольших импульсов создадут меньший объем, чем меньшее количество больших импульсов при той же чистой тяге. К сожалению, взрывы во много раз громче горящих.

Основная трудность с импульсным детонационным двигателем — запуск детонации. Хотя можно запустить детонацию непосредственно с помощью большой искры, количество потребляемой энергии очень велико и непрактично для двигателя. Типичное решение — использовать переход от дефлаграции к детонации (DDT), то есть начать высокоэнергетическое горение и заставить его разогнаться по трубе до точки, где она станет достаточно быстрой, чтобы превратиться в детонацию. [ нужна цитата ] В качестве альтернативы детонация может быть направлена ​​по кругу, а клапаны гарантируют, что только максимальная пиковая мощность может попасть в выхлоп. Так же система взрыва импульсного сжатия может применяться для решения проблемы инициации.

Этот процесс намного сложнее, чем кажется, из-за сопротивления, с которым сталкивается продвигающийся волновой фронт (аналогично волновое сопротивление). ДДТ возникает гораздо быстрее, если в трубке есть препятствия. Наиболее широко используется «Щелкин спираль», который предназначен для создания наиболее полезных вихрей с наименьшим сопротивлением движущейся смеси топлива / воздуха / выхлопных газов. Вихри приводят к разделению пламени на несколько фронтов, некоторые из которых движутся назад и сталкиваются с другими фронтами, а затем ускоряются впереди них.

Такое поведение сложно смоделировать и предсказать, и исследования продолжаются. Как и в случае с обычными импульсными струями, существует два основных типа конструкций: клапанные и бесклапанные. Конструкции с клапанами сталкиваются с теми же трудными для решения проблемами износа, что и их эквиваленты для струйной печати. Бесклапанные конструкции обычно основаны на отклонениях в воздушном потоке для обеспечения одностороннего потока, чего очень трудно добиться с помощью обычного ДДТ.

НАСА поддерживает программу исследований PDE, направленную на высокую скорость, около Мах 5, гражданские транспортные системы. [ нужна цитата ] Однако большая часть исследований PDE носит военный характер, поскольку двигатель может быть использован для разработки нового поколения высокоскоростных двигателей большой дальности. самолет-разведчик который будет летать достаточно высоко, чтобы быть вне зоны досягаемости любой существующей системы ПВО, при этом предлагая дальность полета значительно больше, чем у СР-71, что потребовало использования большого танкерного флота поддержки.

В то время как большинство исследований посвящено высокоскоростному режиму, новые конструкции с гораздо более высокими частотами импульсов, составляющими сотни тысяч, работают хорошо даже на дозвуковых скоростях. В то время как традиционные конструкции двигателей всегда включают в себя компромиссы, ограничивающие их диапазон «наилучших скоростей», PDE, похоже, превосходит их на всех скоростях. Обе Пратт и Уитни и General Electric теперь у них есть активные исследовательские программы PDE в попытке коммерциализировать проекты. [ нужна цитата ]

Основные трудности в импульсных двигателях детонации заключаются в получении ДДТ без необходимости использования трубки достаточно длинной, чтобы сделать ее непрактичной и вызывающей сопротивление летательного аппарата (добавление U-образного изгиба в трубку гасит детонационную волну); снижение шума (часто описывается как звук отбойного молотка); и гашение сильной вибрации, вызванной работой двигателя.

Как проверить датчик детонации

Когда сканер расшифровки кода ошибки недоступен или посещение СТО невозможно, проверить датчик на исправность можно самостоятельно. При этом не следует забывать, что внутри детонационного датчика расположен чувствительный пьезоэлектрический кристалл, поэтому допускать его ударов и падений нельзя.

Проверка требует наличия мультиметра с диапазоном в тысячные доли вольта. В том, что прибор поддерживает рекомендуемый диапазон, следует убедиться до начала процедуры. Также полезно выяснить нормальный уровень сопротивления для датчика проверяемой марки автомобиля.

Проверка датчика детонации

Для проверки напряжения на контактах снятого с головки датчика мультиметр настраивается на милливольты, после чего его щуп «+» замыкается с управляющим контактом, а «-» – с массой проверяемого устройства. К использованию в роли щупа не рекомендуется старая проводка и проводники со скрутками. Лучше чтобы длина провода щупов была минимальной.

Подсоединенный к измерителю датчик зажимается в руке, которой следует выполнить несколько не слишком интенсивных ударных движений по любой поверхности или предмету, в результате чего мультиметр отобразит наличие или отсуствие напряжения. В альтернативном случае можно легонько постучать по центру свободно лежащего датчика чем-то металлическим. Ударные манипуляции вызывают в исправном датчике потенциал в пределах 40-150 мВ. Если же разность потенциалов полностью отсутствует, датчик детонации подлежит замене.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector