Mio-tech-service.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое индикаторные показатели двигателя

  • Астрономия
  • Биология
  • Биотехнологии
  • География
  • Государство
  • Демография
  • Журналистика и СМИ
  • История
  • Лингвистика
  • Литература
  • Маркетинг
  • Менеджмент
  • Механика
  • Науковедение
  • Образование
  • Охрана труда
  • Педагогика
  • Политика
  • Право
  • Психология
  • Социология
  • Физика
  • Химия
  • Экология
  • Электроника
  • Электротехника
  • Энергетика
  • Юриспруденция
  • Этика и деловое общение

Механика Индикаторные показатели работы двигателя

Показатели работы двигателя подразделяются на индикаторные (внутренние), характеризующие совершенство рабочего цикла в цилиндре и учитывающие только тепловые потери в самом цилиндре, и эффективные (внешние), учитывающие помимо тепловых и механические потери, которые имеются при передаче энергии расширения газов через поршень и кривошипно-шатунный механизм на коленчатый вал двигателя

К индикаторным показателям двигателя относятся среднее индикаторное давление рі индикаторная мощность Ni, индикаторный удельный расход топлива gi и индикаторный КПД ηi.

В результате осуществления цикла тепловая энергия, выделяющаяся при сгорании топлива, с известной степенью совершенства (определяемой индикаторным КПД) превращается в полезную работу, развиваемую газами в цилиндре двигателя и называемую индикаторной работой цикла Li. При этом давление в цилиндре непрестанно меняется.

Для удобства ведения расчетов и сравнения разных двигателœей переменные по ходу поршня давления можно заменить постоянным (фиктивным) давлением, ĸᴏᴛᴏᴩᴏᴇ обеспечивает получение той же работы, что и цикл с переменным давлением. Это среднее постоянное давление принято называть средним индикаторным давлением pi. Следовательно, под средним индикаторным давлением подразумевается условное постоянное давление pi действующее на поршень на рабочем ходе и совершающее за один цикл работу, равную индикаторной работе замкнутого цикла. Графически среднее индикаторное давление представляет собой высоту прямоугольника, площадь которого раина площади индикаторной диаграммы, а основание – длинœе диаграммы (рис, 8.1).

Среднее индикаторное давление позволяет сравнивать любые циклы и двигатели любых типов по мощностным показателям независимо от способа осуществления рабочих процессов. Двигатели, в которых получаются большие срединœе индикаторные давления, будут развивать при прочих равных условиях (такт-ность, размеры и число цилиндров, частота вращения) большую мощность.

Рис. 8.1. К определœению среднего индикаторного давления

Среднее теоретическое индикаторное давление рi может быть выражено как отношение индикаторной работы цикла L’i к рабочему объему цилиндра Vs:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, среднее индикаторное давление представляет собой удельную работу цикла, т. е. работу, приходящуюся на единицу рабочего объема цилиндра.

Из расчетной теоретической индикаторной диаграммы (рис. 8.1) найдем полезную индикаторную работу газов для смешанного цикла в виде алгебраической суммы индикаторных работ отдельных процессов:

где Lcy работа процесса подвода теплоты при V = const; из-за отсутствия изменения объема Lcy = 0; Lyz – работа процесса подвода теплоты при р = const; Lzb –работа процесса расширения при n2 = const; Lac – работа процесса сжатия при n1 = const.

В результате получим окончательное выражение для среднего теоретического индикаторного давления

Действительное среднее индикаторное давление для четырехтактных ДВС

где – коэффициент скругления индикаторной диаграммы, который представляет собой отношение площади действительной индикаторной диаграммы к площади теоретической индикаторной диаграммы. Для четырехтактных двигателœей ξ = 0,90. 0,96.

Скругление диаграммы у точки с на действительной индикаторной диаграмме объясняется опережением подачи топлива; у точек у и z – конечной скоростью сгорания топлива и, наконец, в конце хода расширения у точек b и а – предвареннем открытия выпускного клапана.

В двухтактных двигателях jбычно принимают, что хвостовая часть диаграммы полностью компенсирует потери на скругление. Тогда действительное среднее индикаторное давление двухтактных двигателœей, отнесенное к полному ходу поршня, может быть определœено как

Мощность двигателя, соответствующая индикаторной работе замкнутого цикла, принято называть индикаторной мощностью:

Индикаторная мощность многоцилиндрового двигателя:

К потерям относятся потери теплоты от неполноты сгорания топлива и в результате теплообмена рабочего тела со стенками рабочего цилиндра. Все тепловые потери в расчетном цикле реального двигателя учитываются индикаторным КПД, который является критерием совершенства использования теплоты, подведенной к рабочему телу с топливом.

Индикаторный КПД представляет собой отношение количества теплоты, преобразованной в индикаторную работу (работу, развиваемую газами в цилиндре реального двигателя), к количеству теплоты, подведенной для совершения этой работы:

;

;

;

где Gт – часовой расход топлива, кг/ч; Qн – низшая теплота сгорания, кДж/кᴦ.

Удельный индикаторный расход топлива, кг/(кВт·ч):

или

где – часовой расход топлива, кг/ч.

Скользящая средняя

Это, пожалуй, самый популярный индикатор из всех существующих. Скользящая средняя предназначена для сглаживания ценового графика и выявления на нем основных тенденций. Рассчитывается она таким образом, что в каждой ее точке представлена информация о ценах за определенный период времени. Этот период времени называют периодом скользящей средней.

График цены со скользящей средней

То есть, в каждой точке скользящей средней высчитывается средняя цена за заданный в её настройках временной интервал. Чем больше этот интервал (период), тем более гладкая получается скользящая и тем меньше она реагирует на мелкие, незначительные ценовые движения. Наоборот, с уменьшением периода, скользящая средняя становится всё более чуткой к каждому очередному всплеску (или впадине) на ценовом графике.

Выбор периода MA производится таким образом, чтобы с одной стороны игнорировать случайные колебания (волатильность) ценового графика, а с другой, не упустить действительно важных ценовых изменений.

Самая простая интерпретация показаний данного индикатора сводится к анализу его взаимопересечений с графиком цены. Если цена пересекает скользящую снизу-вверх, то это сигнал к покупке. Наоборот, при пересечении сверху-вниз (цена пересекает скользящую сверху-вниз), речь идёт уже о сигнале к продаже.

Существует несколько разновидностей скользящих средних:

  1. Простая скользящая средняя (SMA)
  2. Взвешенная скользящая средняя (WMA)
  3. Экспоненциальная скользящая средняя (EMA)
  4. Модифицированная скользящая средняя (MMA)

Как показывает практика наилучшие результаты показывает простая скользящая средняя (SMA).

Подробнее о скользящих средних, подаваемых ими сигналах, а также о методике их расчета вы можете прочитать здесь.

Очень популярный индикатор технического анализа основанный на схождениях и расхождениях двух скользящих средних с различными периодами. Различают два варианта представления данного индикатора: линейное и гистограмма. Линейное представление в виде двух линий – «быстрой» и «медленной», а гистограмма в виде столбцов, показывающих расстояние между этими двумя линиями в каждый момент времени.

График цены и индикатор MACD

MACD аббревиатура от английского Moving Average Convergence/Divergence, что в дословном переводе означает схождение и расхождение МА (скользящих средних) был разработан основателем инвестиционной компании Signalert Corporation Джеральдом Аппелем и предназначался для анализа силы и направления тренда, а кроме этого, для выявления разворотных точек на ценовом графике.

Сигналом к покупке служит пересечение быстрой линии медленной снизу-вверх, а сигналом продаже аналогичное пересечение сверху-вниз (то есть, когда быстрая линия пересекает медленную сверху-вниз).

Достаточно сильным сигналом считается дивергенция MACD (расхождение графика индикатора с графиком цены). Хорошие результаты дает использование MACD при боковом движении рынка (при флэте) и на больших таймфреймах (недели, месяцы). На малых таймфреймах этот индикатор дает слишком много ложных сигналов.

Подробнее о применении данного индикатора, а также об основных его достоинствах и недостатках читайте здесь.

ОПРЕДЕЛЕНИЕ ЧУВСТВИТЕЛЬНОСТИ К АНТИБИОТИКАМ:
МЕТОДЫ, РЕЗУЛЬТАТЫ, ОЦЕНКА

Решедько Галина Константиновна,
к.м.н., ассистент кафедры клинической фармакологии
Смоленской государственной медицинской академии
214019, г.Смоленск, ул.Крупской, 28, а/я № 5.
Тел.: +7(0812) 61 13 01, 61 13 27, Факс: (0812) 61 12 94,
E-Mail: galina@antibiotic.ru

Содержание

  • Резюме
  • Методы определения чувствительности к антибиотикам
  • Интерпретация результатов определения чувствительности
    • Чувствительные микроорганизмы (susceptible)
    • Резистентные микроорганизмы (resistant)
    • Микроорганизмы c промежуточной резистентностью (intermediate)
  • Литература

Резюме

В лекции рассмотрены основные методы определения чувствительности in vitro микроорганизмов к антимикробным препаратам (диско-диффузионный, Е-тестов, методы разведения). Отражены подходы к эмпирическому и этиотропному назначению антибиотиков в клинической практике. Обсуждены вопросы интерпретации результатов определения чувствительности с клинической и микробиологической точек зрения.

В настоящее время в клинической практике существуют два принципа назначения антибактериальных препаратов: эмпирическое и этиотропное. Эмпирическое назначение антибиотиков основано на знаниях о природной чувствительности бактерий, эпидемиологических данных о резистентности микроорганизмов в регионе или стационаре, а также результатах контролируемых клинических исследований. Несомненным преимуществом эмпирического назначения химиопрепаратов является возможность быстрого начала терапии. Кроме того, при таком подходе исключаются затраты на проведение дополнительных исследований.

Эмпирическое назначение антибиотиков основано на знаниях о природной чувствительности бактерий, эпидемиологических данных о резистентности микроорганизмов в регионе или стационаре и результатах контролируемых клинических исследований

Однако при неэффективности проводимой антибактериальной терапии, при нозокомиальных инфекциях, когда затруднительно предположить возбудителя и его чувствительность к антибиотикам стремятся проводить этиотропную терапию. Этиотропное назначение антибиотиков предполагает не только выделение возбудителя инфекции из клинического материала, но и определение его чувствительности к антибиотикам. Получение корректных данных возможно только при грамотном выполнении всех звеньев бактериологического исследования: от взятия клинического материала, транспортировки его в бактериологическую лабораторию, идентификации возбудителя до определения его чувствительности к антибиотикам и интерпретации полученных результатов.

Этиотропное назначение антибиотиков основано на выделении возбудителя инфекции из очага инфекции и определении его чувствительности к антибиотикам

Вторая причина, обусловливающая необходимость определения чувствительности микроорганизмов к антибактериальным препаратам — это получение эпидемиологических данных о структуре резистентности возбудителей внебольничных и нозокомиальных инфекций. В практике эти данные используют при эмпирическом назначении антибиотиков, а также для формирования больничных формуляров.

Методы определения чувствительности к антибиотикам

Методы определения чувствительности бактерий к антибиотикам делятся на 2 группы: диффузионные и методы разведения.

Читать еще:  Что такое битурбовый двигатель

Определение чувствительности бактерий к антибиотикам:

    диффузионные методы
  • с использованием дисков с антибиотиками
  • с помощью Е-тестов
    методы разведения
  • разведение в жидкой питательной среде (бульоне)
  • разведение в агаре

При определении чувствительности диско-диффузионным методом на поверхность агара в чашке Петри наносят бактериальную суспензию определенной плотности (обычно эквивалентную стандарту мутности 0,5 по McFarland) и затем помещают диски, содержащие определенное количество антибиотика. Диффузия антибиотика в агар приводит к формированию зоны подавления роста микроорганизмов вокруг дисков. После инкубации чашек в термостате при температуре 35 о -37 о С в течение ночи учитывают результат путем измерения диаметра зоны вокруг диска в миллиметрах (рис. 1).

Рисунок 1. Определение чувствительности микроорганизмов диско-диффузионным методом.

Определение чувствительности микроорганизма с помощью Е-теста проводится аналогично тестированию диско-диффузионным методом. Отличие состоит в том, что вместо диска с антибиотиком используют полоску Е-теста, содержащую градиент концентраций антибиотика от максимальной к минимальной (рис. 2). В месте пересечения эллипсовидной зоны подавления роста с полоской Е-теста получают значение минимальной подавляющей концентрации (МПК).

Рисунок 2. Определение чувствительности микроорганизмов с помощью Е-тестов.

Несомненным достоинством диффузионных методов является простота тестирования и доступность выполнения в любой бактериологической лаборатории. Однако с учетом высокой стоимости Е-тестов для рутинной работы обычно используют диско-диффузионный метод.

Методы разведения основаны на использовании двойных последовательных разведений концентраций антибиотика от максимальной к минимальной (например от 128 мкг/мл, 64 мкг/мл, и т.д. до 0,5 мкг/мл, 0,25 мкг/мл и 0,125 мкг/мл). При этом антибиотик в различных концентрациях вносят в жидкую питательную среду (бульон) или в агар. Затем бактериальную суспензию определенной плотности, соответствующую стандарту мутности 0,5 по MсFarland, помещают в бульон с антибиотиком или на поверхность агара в чашке. После инкубации в течение ночи при температуре 35 о -37 о С проводят учет полученных результатов. Наличие роста микроорганизма в бульоне (помутнение бульона) или на поверхности агара свидетельствует о том, что данная концентрация антибиотика недостаточна, чтобы подавить его жизнеспособность. По мере увеличения концентрации антибиотика рост микроорганизма ухудшается. Первую наименьшую концентрацию антибиотика (из серии последовательных разведений), где визуально не определяется бактериальный рост принято считать минимальной подавляющей концентрацией (МПК). Измеряется МПК в мг/л или мкг/мл (рис. 3).

Минимальная подавляющая концентрация (МПК) — наименьшая концентрация антибиотика (мг/л или мкг/мл), которая in vitro полностью подавляет видимый рост бактерий

Рисунок 3. Определение значения МПК методом разведения в жидкой питательной среде.

Интерпретация результатов определения чувствительности

На основании получаемых количественных данных (диаметра зоны подавления роста антибиотика или значения МПК) микроорганизмы подразделяют на чувствительные, умеренно резистентные и резистентные (рис. 4). Для разграничения этих трех категорий чувствительности (или резистентности) между собой используют так называемые пограничные концентрации (breakpoint) антибиотика (или пограничные значения диаметра зоны подавления роста микроорганизма).

Рисунок 4. Интерпретация результатов определения чувствительности бактерий в соответствии со значениями МПК.

Пограничные концентрации не являются неизменными величинами. Они могут пересматриваться, в зависимости от изменения чувствительности популяции микроорганизмов. Разработкой и пересмотром критериев интерпретации занимаются ведущие специалисты (химиотерапевты и микробиологи), входящие в специальные комитеты. Одним из них является Национальный комитет по клиническим лабораторным стандартам США (National Committee for Clinical Laboratory Standards — NCCLS). В настоящее время стандарты NCCLS признаны в мире и используются как международные для оценки результатов определения чувствительности бактерий при многоцентровых микробиологических и клинических исследованиях.

Существуют два подхода к интерпретации результатов определения чувствительности: микробиологический и клинический. Микробиологическая интерпретация основана на анализе распределения значений концентраций антибиотика, подавляющих жизнеспособность бактерий. Клиническая интерпретация основана на оценке эффективности антибактериальной терапии.

Чувствительные микроорганизмы (susceptible)

Клинически к чувствительным относят бактерии (с учетом параметров, полученных in vitro), если при лечении стандартными дозами антибиотика инфекций, вызываемых этими микроорганизмами, наблюдают хороший терапевтический эффект.

При отсутствии достоверной клинической информации подразделение на категории чувствительности базируется на совместном учете данных, полученных in vitro, и фармакокинетики, т.е. на концентрациях антибиотика, достижимых в месте инфекции (или в сыворотке крови).

Резистентные микроорганизмы (resistant)

К резистентным (устойчивым) относят бактерии, когда при лечении инфекции, вызванной этими микроорганизмами, нет эффекта от терапии даже при использовании максимальных доз антибиотика. Такие микроорганизмы имеют механизмы резистентности.

Микроорганизмы c промежуточной резистентностью (intermediate)

Клинически промежуточную резистентность у бактерий подразумевают в случае, если инфекция, вызванные такими штаммами, может иметь различный терапевтический исход. Однако лечение может быть успешным, если антибиотик используется в дозировке, превышающей стандартную, или инфекция локализуется в месте, где антибактериальный препарат накапливается в высоких концентрациях.

С микробиологической точки зрения к бактериям с промежуточной резистентностью относят субпопуляцию, находящуюся в соответствии со значениями МПК или диаметра зон, между чувствительными и резистентными микроорганизмами. Иногда штаммы с промежуточной резистентностью и резистентные бактерии объединяют в одну категорию резистентных микроорганизмов.

Необходимо отметить, что клиническая интерпретация чувствительности бактерий к антибиотикам является условной, поскольку исход терапии не всегда зависит только от активности антибактериального препарата против возбудителя. Клиницистам известны случаи, когда при резистентности микроорганизмов, по данным исследования in vitro, получали хороший клинический эффект. И наоборот, при чувствительности возбудителя может наблюдаться неэффективность терапии.

В определенных клинических ситуациях, когда недостаточно результатов исследования чувствительности обычными методами, определяют минимальную бактерицидную концентрацию.

Минимальная бактерицидная концентрация (МБК) — наименьшая концентрация антибиотика (мг/л или мкг/мл), которая при исследовании in vitro вызывает гибель 99,9% микроорганизмов от исходного уровня в течение определенного периода времени.

Минимальная бактерицидная концентрация (МБК) — это наименьшая концентрация антибиотика (мг/л или мкг/мл), которая при исследовании in vitro вызывает гибель 99,9% микроорганизмов от исходного уровня в течение определенного периода времени

Значение МБК используют при терапии антибиотиками, обладающими бактериостатическим действием, или при отсутствии эффекта от антибактериальной терапии у особой категории больных. Частными случаями для определения МБК могут быть, например, бактериальный эндокардит, остеомиелит или генерализованные инфекции у пациентов с иммунодефицитными состояниями.

В заключение хотелось бы отметить, что на сегодняшний день не существует методов, которые позволили бы с абсолютной достоверностью прогнозировать клинический эффект антибиотиков при лечении инфекционных болезней. Однако, данные результатов определения чувствительности могут служить хорошим ориентиром клиницистам для выбора и коррекции антибактериальной терапии.

Таблица 1. Критерии интерпретации чувствительности бактерий

тип

Существует три основных типа индикаторов pH: жидкие кислотно-основные индикаторы, которые работают в соответствии с определенным диапазоном pH; бумага и другие индикаторные материалы, которые меняют цвет в виде жидкого или газообразного образца, добавляются к их поверхности; и цифровые рН-метры, которые измеряют разность потенциалов между двумя электродами.

Жидкостные индикаторы

Жидкие индикаторы представляют собой слабые кислоты или органические основания, которые имеют различные цвета в зависимости от их кислотной или основной формы. Они работают в ограниченных диапазонах, меняя цвет после достижения этого и перестая менять цвет при достижении максимального уровня диапазона.

Для работы их следует использовать только в растворах, где можно наблюдать изменение цвета (желательно бесцветное).

Существует большое количество жидкостных индикаторов разных цветов и диапазонов pH, включая крезоловый красный (от красного до желтого в диапазоне от 0,2 до 1,8), метиловый красный (от красного до желтого в диапазоне 4). От 2 до 6,2), бромкрезоловый зеленый (от розового до синего / зеленый от 4,2 до 5,2) и фенолфталеин (от бесцветного до розового в диапазоне от 8,0 до 10,0).

Эти показатели популярны для степеней в аналитической химии, хотя вы должны иметь определенный уровень подготовки, чтобы выполнить эту практику точно..

Индикаторные документы

Существует несколько типов бумаги, используемой для измерения pH, но самым известным является лакмусовая бумага, которая изготавливается из порошка, который получают из лишайников..

Лакмусовая бумага используется для того, чтобы узнать, является ли жидкий или газообразный раствор кислым или щелочным (не зная, каким будет его точный pH или его оценка), и представлена ​​в двух презентациях: синий и красный..

Синяя лакмусовая бумага меняется на красный в кислых условиях, а красная лакмусовая бумага меняется на синий в щелочных и щелочных условиях и может быть переработана для проведения теста в обратном порядке, когда бумага уже изменила цвет.

Известные ограничения бумаги — такие как ее неспособность предложить точное или предполагаемое значение pH и способность менять цвет на другие, когда он вступает в реакцию с определенными соединениями, — вызвали его замену жидкостными индикаторами и / или pH-метрами..

рН-метры

PH-метры возникают из-за необходимости лабораторных аналитиков получать точные значения этого параметра, что было невозможно при использовании бумажных индикаторов или жидкостных индикаторов..

Они основаны на измерении разности электрических потенциалов между pH электрода и электродом сравнения..

Работа этих измерителей pH более подробно объясняется в следующем разделе, но в целом эти показатели считаются наиболее точными, обеспечивая точное количество (с точностью до 0,01 единиц pH) параметра и подсчет с чувствительностью и скоростью, превосходящей два других метода.

Кроме того, они также могут измерять другие характеристики, такие как растворенные твердые вещества, электропроводность и температура раствора..

Единственный недостаток этого типа рН-метров заключается в том, что они представляют собой деликатное оборудование, и в дополнение к первоначальной калибровке, которую должен выполнять инструменталист или ценитель оборудования, их также необходимо регулярно чистить, чтобы электроды не накапливали материал в них..

Современные методы диагностики аллергий

Современные методы диагностики аллергии

Аллерголо́гия (от греч. ἄλλος — другой, иной, чужой, ἔργον — воздействие и Λόγος — знание, слово, наука) — раздел медицины, изучающий аллергические реакции и заболевания, причины их возникновения, механизмы развития и проявления, методы диагностики, профилактики и лечения.

Что такое аллергия?

Аллергия — это необычная повышенная чувствительность к различным веществам, которые у большинства людей не вызывают болезненных реакций. Как правило, это домашняя пыль, пыльца растений, плесень, эпителий домашних животных, некоторые пищевые продукты и др. Частота аллергических заболеваний возросла в конце XX века. Распространенность аллергии напоминает эпидемию: за последние 20 лет она увеличилась в 3-4 раза и охватывает 10-30% населения в разных странах мира, причем заболевание часто протекает в тяжелой, необычной форме. Это связано с усилением аллергенной нагрузки на человека.

Ухудшающаяся экологическая ситуация, нерациональное питание, излишняя лекарственная терапия, бесконтрольное использование антибиотиков, стрессы, малоподвижный образ жизни, изменения в климате — все это повышает уязвимость организма человека перед воздействием аллергенов. По прогнозам Всемирной организации здравоохранения XXI станет веком аллергии. Большинство исследователей прогнозируют дальнейший рост частоты аллергических болезней, в том числе у детей, а медицина ищет новые пути решения проблемы, в частности — развивает аллергологические исследования.

Необычная реакция на обычное окружение

Аллергены — чужеродные вещества, которые, поступая в организм, становятся причиной аллергических реакций.

В первые годы жизни ребенка развитие заболевания провоцируют, прежде всего, пищевые аллергены (коровье молоко, яйцо, рыба, злаковые, овощи и фрукты оранжевой или красной окраски).

У детей старшего возраста и взрослых на первый план выступают другие аллергены:

  • бытовые (домашняя пыль, клещи домашней пыли);
  • пыльцевые (пыльца злаковых и сорных трав, деревьев);
  • аллергены животных (эпителий, частицы кожного покрова, выделения животных);
  • грибковые (плесневые и дрожжевые грибы);
  • бактериальные (в частности, токсины, выделяемые микробом — золотистым стафилококком).

Бытовые аллергены

Домашняя пыль состоит из грибков, растительных волокон, частиц пищи, чешуек и экскрементов насекомых, частиц кожного покрова (эпидермиса) животных и человека. Кроме того, в ней поселяются микроклещи, обладающие мощными аллергенными свойствами (даже погибшие). Особенно много пыли с микроклещами скапливается в мягкой мебели, матрацах, подушках, одеялах и коврах.

Пыльцевые аллергены

Виновником аллергии может стать пыльца растений:

  • деревьев и кустарников (береза, ольха, лещина или орешник, дуб, клен, тополь, ясень, вяз и др.);
  • злаковых (луговых) трав (тимофеевка, овсяница, мятлик, пырей, костер, рожь, гречиха, пшеница и др.);
  • сорных трав (лебеда, амброзия, одуванчик, конопля, крапива, полынь, лютик и др.).

В зависимости от периодов цветения растений наблюдаются три пика обострений аллергических заболеваний. Первый — весной (апрель-май) в период цветения деревьев, второй — летом (июнь-июль), вызванный пыльцой злаков, третий — осенью (август-октябрь), обусловленный пыльцой сорных трав.

Аллергены животных

Чаще всего аллергию вызывает эпидермис собак и кошек, а также используемые для набивки мебели, подушек и перин, шерсть и перо. Также может возникать реакция на слюну и мочу животных. Все чаще причиной развития аллергических заболеваний становятся домашние насекомые (клещи, тараканы, клопы, моль, домашние муравьи).

Грибковые аллергены

Грибы — микроорганизмы обитают как внутри помещений и являются компонентом в домашней пыли, так и во внешней среде. В жилых помещениях грибков особенно много в старой мебельной обивке, комнатных увлажнителях воздуха, в ванных комнатах. Во внешней среде грибки распространены повсеместно. Их можно обнаружить в воздухе, почве, пресной и соленой воде.

Важно знать, что при аллергии на грибы (микроорганизмы), больной может не переносить некоторые продукты, в процессе приготовления которых используются методы ферментирования или брожения: кисломолочные продукты, изделия из дрожжевого теста, кислая капуста, копченые мясо или рыба, квас, пиво, газированные напитки и др.

Роль вирусов и бактерий

Некоторые вирусы и бактерии способствуют развитию аллергических заболеваний и осложняют их течение.

Механизмы аллергической реакции

Известно несколько механизмов развития аллергической реакции, и самый распространенный из них — немедленного типа. Это аллергическая реакция, обусловленная иммуноглобулином Е. Иммуноглобулины — это особые белки, присутствующие в крови и в секрете, а механизм их действия в случае аллергии таков: в организме у человека, страдающего аллергией или предрасположенного к ней, накапливаются антитела, которые, соединяясь с антигеном извне (аллергологи называют его «аллерген»), вызывают настоящую иммунную реакцию «антиген-антитело». От момента воздействия до развития реакции проходит всего несколько секунд.

Проявления аллергии очень разнообразны. Это могут быть воспаления слизистой оболочки носа (ринит) и глаз (конъюнктивит); отек лица, шеи, локальные отеки (отек Квинке); бронхоспазм с исходом в развитие астмы; кожные высыпания и зуд (крапивница) или дерматит (нейродермит).

Аллергия бывает двух видов: сезонная и круглогодичная, что, в свою очередь, связано с характером аллергена. Круглогодичную реакцию вызывают аллергены, постоянно присутствующие в нашей среде обитания: домашняя пыль, плесневые грибки, живущие в ванных комнатах, кухнях и коридорах старых домов, лекарства, бытовая химия… Сезонная аллергия связана с временами года и жизнью растений — и это помогает достаточно точно определить период обострения.

Диагноз: аллергия

Очень важно диагностировать аллергию до наступления кризиса, поэтому при первых же подозрениях лучше прийти к аллергологу. Поводом для беспокойства должны послужить следующие симптомы:

  • длительный насморк;
  • зуд в носу и приступы чихания;
  • зуд век, слезотечение;
  • покраснение глаз;
  • кожные высыпания и зуд;
  • отеки;
  • затрудненное дыхание.

Необходимо установить, что именно вызывает аллергию. Для этого сегодня существует широкий спектр методов и анализов.

Анализы на аллергию

1. Кожные скарификационные пробы

Традиционным методом диагностики аллергии является метод постановки аллергологических проб. Кожные пробы ставят на внутренней поверхности предплечий. Стерильным скарификатором делают царапину и наносят каплю диагностического аллергена. Через 20 минут можно оценить результаты. Если на месте нанесения аллергена возникает припухлость или покраснение, то проба считается положительной. За время одного исследования возможна оценка 15-20 проб.

Противопоказания:

К абсолютным противопоказаниям к данному исследованию относятся: острый инфекционный процесс; аллергия или другое хроническое заболевание в стадии обострения; прием антигистаминных и гормональных препаратов. Также особенностью проб с пыльцевыми аллергенами является возможность их проведения только вне сезона цветения трав (октябрь-март).

К относительным противопоказаниям относится возраст ребенка. Обычно данное исследование проводится у детей после 3 лет, так как у маленьких детей высокая реактивность кожи и высока вероятность ложноположительных результатов.

2. Определение общего и специфических иммуноглобулинов E

Повышение общего уровня IgE может свидетельствовать о наличии аллергических заболеваний, а также о других патологических состояниях. Данный метод исследования используется как скрининг-тест для подтверждения аллергического характера заболевания.

Для диагностики «виновного аллергена» определяются специфические IgE, вступающие в реакции с конкретными аллергенами. О наличии аллергии судят по уровню IgE, которые вырабатываются в ответ на аллергены, а не по клинической реакции (проявлению симптомов аллергической реакции). В случае если сыворотка крови пациента дает реакцию с каким-то аллергеном, значит в ней содержатся IgE-антитела, отвечающие за развитие аллергических реакций.

Подготовка к исследованию: за 3 дня до взятия крови необходимо исключить физические и эмоциональные нагрузки.

Противопоказания:

Данный тест не имеет абсолютных противопоказаний, т.е. его можно проводить даже в периоде обострения заболевания и детям до 3 лет.

Как показывает практика детям до 6 месяцев данное исследование не оправдано, т.к. в этом возрасте еще слабый иммунный ответ организма и уровень IgE низкий.

Нормальные значения IgE:

ВозрастУровень IgE, Ед/мл
5 дней — 12 месяцев0 — 15
12 месяцев — 6 лет0 — 60
6 — 10 лет0 — 90
10 — 16 лет0 — 200
дети старше 16 лет и взрослые0 — 100

Повышение уровня IgE может говорить о наличие аллергических заболеваний и некоторых других патологических состояниях.

3. Метод иммуноблотинга

В настоящее время наиболее широкое распространение получил метод иммуноблотинга. Иммуноблоттинг (иммуноблот) — высокоспецифичный и высокочувствительный референтный метод выявления антител к отдельным антигенам (аллергенам), основанный на постановке иммуноферментного анализа на нитроцеллюлозных мембранах, на которые в виде отдельных полос нанесены специфические белки. Если имеются антитела против определенных аллергенов — появляется темная линия в соответствующем локусе. Уникальность иммуноблота заключается в его высокой информативности и достоверности получаемых результатов.

Данный метод исследования не имеет противопоказаний.

Чаще всего применяются стандартные панели, каждая из которых содержит набор аллергенов, например:

  • 2215 Атопическая панель (Ig E). Аллергоскрин иммуноблот (g6-Тимофеевка луговая ; g12 — Рожь посевная; t3- Береза; w6- Полынь; d1- Dermatophagoides pteronyssinus (клещ) ; e1- Кошка; e2- Собака; e3- Лошадь; m2- Cladosporium herbarum ; m6- Alternaria alternata ; f1- Белок яйца; f2-Коровье молоко ; f3-Треска; f4- Пшеничная мука; f9- Рис; f14- Соевые бобы; f17- Фундук; f31- Морковь; f35- Картофель; f49- Яблоко);
  • 2216 Ингаляционная панель (Ig E). Аллергоскрин иммуноблот (g1-Колосок душистый обыкновенный; g3-Ежа сборная; g6-Тимофеевка луговая; g12-Рожь посевная; t2-Ольха; t3-Береза; t4-Лещина; t7-Дуб; w1-Амброзия полынолистная; w6-Полынь; w9-Подорожник; d1-Dermatophagoides pteronyssinus (клещ); d2-Dermatophagoides farinae (клещ); e1- Кошка; e2- Собака; e3- Лошадь; m1-Penicillium notatum (плесневый гриб); m2-Cladosporium herbarum (плесневый гриб); m3-Aspergillus fumigatus (плесневый гриб); m6-Alternaria alternata (плесневый гриб));
  • 2217 Пищевая панель (Ig E). Аллергоскрин иммуноблот (f1-Белок яйца; f75-Желток яйца; f2- Коровье молоко; f45- Пекарские дрожжи; f4-Пшеничная мука; f5-Ржаная мука; f9-Рис; f14- Соевые бобы; f13-Арахис; f17-Фундук; f20- Миндальный орех; f49-Яблоко; f84-Киви; f237-Абрикос; f25- Томат; f31-Морковь; f35-Картофель; f85-Сельдерей; f3-Треска; f23- Краб).

Помните о том, что перед проведением обследования желательно проконсультироваться с врачом для выбора оптимальной панели. Исследование проводится натощак, взятие крови осуществляется из вены.

Референтные значения, kU/L:

100Класс 6Экстремально высокий титр антител

Интерпретация результатов: в норме специфические IgE содержатся в сыворотке в очень малых количествах, как правило, ниже 0,35 kU/L. У сенсибилизированных (чувствительных) пациентов отмечается повышение этого уровня до 0,35 kU/L. Данный метод определяет количество IgE антител в диапазоне от 0,35 до 100 kU/L и результат выражается количественно. Поскольку не существует прямой зависимости между значениями специфических IgE и тяжестью клинических симптомов, полученные результаты интерпретируются врачом только в контексте клинических данных больных.

Полный перечень анализов на определение аллергии смотрите в разделе Аллергология

Сдать анализ на аллергию можно в Минске, Гомеле, Бресте, Гродно, Витебске, Могилеве, Бобруйске, Барановичах, Солигорске, Слуцке, Полоцке, Новополоцке, Орше, Жлобине, Светлогорске, Молодечно, Пинске, Борисове, Мозыре, Речице, Сморгони.

Дисплей счётчика. Как считать показания

Как считать показания.

Для того, чтобы правильно считать показания со счетчика, вам необходимо узнать его тип.

А) ВНЕШНИЙ ВИД ДИСПЛЕЯ. СТРОКИ С ДАННЫМИ

Дисплей счетчика МАТРИЦА 7 серии Extra имеет такой внешний вид:

На дисплее счетчика отображается различная информация на экранах, сменяющих друг друга. Смена экранов должна происходить автоматически, через 5-10 с. Также можно пролистать экраны с помощью кратковременного нажатия на функциональную кнопку.

Счетчики серии Extra поддерживают два режима отображения измеряемых величин на дисплее:

  • Пользовательский режим.
  • Служебный режим.

В пользовательском режиме выбранная информация циклически отображается с заданной периодичностью (обычно 5-10 c).
Служебный режим вызывается нажатием кнопки, информация листается последующими нажатиями кнопки. Выход из служебного в пользовательский режим происходит автоматически по истечению таймаута указанного в конфигурации (по умолчанию 1 минута). Для служебного режима можно указать набор выводимых величин, отличный от пользовательского.

Если на дисплее не отображается никакая информация при наличие питания на счетчике, то, возможно, он настроен на отключение через некоторое время простоя, для экономии питания. Включить дисплей можно также кратковременно нажав на функциональную кнопку. Дисплей также автоматически отключается при температуре ниже -20 С для защиты. При этом счетчик продолжает учитывать электроэнергию в нормальном режиме. Дисплей автоматически включится, когда температура повысится выше -20 С.

Б) ОСНОВНАЯ ИНФОРМАЦИЯ. СУММАРНЫЕ ПОКАЗАНИЯ И МОЩНОСТЬ.

После включения счетчика МАТРИЦА на его дисплее будут отображаться следующие заводские параметры:

Для 7 серии Extra.

Активная энергия, импорт (A+) c OBIS кодом 1.8.0:

На дисплее отображено шесть знаков до точки и два знака после точки. То есть значность составляет шесть с точностью до сотых кВт*ч.

Активная мощность, по модулю (Р+) OBIS код 15.7.0 или Активная Мощность(P) OBIS код 16.7.0

На дисплее отображено два знака до точки и три знака после точки. То есть активная мощность отображается с точностью до тысячных кВт.

Местное время OBIS код 0.9.1 и местная дата OBIS код 0.9.1:

Для 7 серии Lite.

Активная энергия, импорт (A+):

На дисплее отображено шесть знаков до точки и два знака после точки. То есть значность составляет шесть с точностью до сотых кВт*ч.

Активная мощность (Р+ или Р):

На дисплее отображено два знака до точки и три знака после точки. То есть активная мощность отображается с точностью до тысячных кВт.

Локальная дата и локальное время:

В) ПОКАЗАНИЯ ПО ТАРИФАМ. АВАРИИ И СОБЫТИЯ.

При наличии на дисплее показаний дифференцированного тарифа по зонам суток, помимо информации, приведенной выше, также будут отображаться следующие данные.

Для 7 серии Extra.

Активная энергия, импорт, тариф 1…6 (А+ 1.8.1…1.8.6):

На дисплее отображается индикация такого же формата, как для активной энергии, импорт и OBIS код.

Также на дисплее могут отражаться следующие аварии и события:

В случае ошибок, связанных с некорректным монтажом или другими причинами, помимо основных экранов также будет отображаться еще один экран с кодами от 1 до 8. Коды ошибок отображаются по возрастанию слева направо. Для каждой ошибки существует своя, фиксированная позиция. Одновременно могут отображаться несколько кодов ошибок. Коды ошибок выводятся на дисплей вместе с соответствующими символами или символами других событий.

Примеры комбинаций кодов ошибки и нижних символов:

Для 7 серии Lite.

Активная энергия, импорт, тариф 1…6 (А+ 1…6):

На дисплее отображается индикация такого же формата, как и для активной энергии, импорт.

Также на дисплее могут отражаться следующие аварии и события:

Г) ДРУГИЕ ПАРАМЕТРЫ. ПАСПОРТА СЧЕТЧИКОВ.

Помимо основных параметров на дисплее счетчика МАТРИЦА могут отражаться следующие параметры, например,

для 7 серии Extra:

  • Суммарная активная энергия (в кВт*ч);
  • Активная энергия экспорт и по тарифам (1…6) (кВт*ч);
  • Реактивная индуктивная и емкостная мощность (кВАр);
  • Реактивная индуктивная и емкостная энергия (кВАр*ч);
  • Ток, мгновенный (А);
  • Напряжение, мгновенное (В);
  • Частота сети;
  • Сообщения для пользователей

для 7 серии Lite:

  • Суммарная активная энергия (в кВт);
  • Активная энергия экспорт и по тарифам (1…6) (кВт*ч);
  • Реактивная индуктивная и емкостная мощность (кВАр);
  • Реактивная индуктивная и емкостная энергия (кВАр*ч);
  • Реактивная индуктивная и емкостная мощность (кВАр);
  • Реактивная индуктивная и емкостная энергия (кВАр*ч);
  • cosϕ (коэффициент мощности).

Подробнее о параметрах и характеристиках счетчиков МАТРИЦА можно узнать в их паспортах.

Д) ПОКАЗАНИЯ НА УДАЛЕННОМ ДИСПЛЕЕ.

Удаленный дисплей CIU7

LCD экран Удаленного дисплея CIU7 в общем виде выглядит так:

Удаленный дисплей программируется из Центра и может отражать следующие параметры:

  • Активная энергия экспорт и по тарифам (1…6) (кВт*ч);
  • Активная энергия импорт и по тарифам (1…6) (кВт*ч);
  • Реактивная энергия по квадрантам и по тарифам (кВАр*ч);
  • Ток, мгновенный (А);
  • Напряжение, мгновенное (V);

Внимание! Следует иметь в виду, что набор экранов, выводимых на пользовательский дисплей, определяется типом и конфигурацией счётчика.

При включении дисплея в сеть запускается рабочая программа дисплея, о чем свидетельствует инициализация всех сегментов экрана. После этого на экране высвечивается номер текущей версии ПО вида APP ХХ.ХХ.

Далее дисплей переходит в рабочий режим, и на экран выводятся данные, полученные ранее от счётчика.

  • время в формате ХХ:ХХ:ХХ (чч:мм:cc);
  • дата в формате XX-XX-XX (дд-мм-сс);
  • показания(в зависимости от конфигурации на счетчике);
  • номер счетчика.

При первоначальном включении, когда данные со счётчика еще не получены, на экране будут отображаться следующие символы

Данные на Удаленном дисплее сменяются с дискретностью 1, 5, 15 минут (в зависимости от конфигурации на счетчике). Удаленный дисплей необходимо оставить в розетке до тех пор, пока не отразятся данные по счетчику. После того, как Удаленный дисплей впервые отобразит данные по счетчику, его можно отключить из розетки и включать уже по мере необходимости. После повторного включения дисплея необходимо подождать некоторое время до того, как обновятся показания. Рядом с дисплеем на корпусе присутствует кнопка при помощи которой можно отключать/включать основное реле счётчика.

Дисплей поддерживает одновременно один счётчик.

Подробнее о параметрах и характеристиках удаленного дисплея можно ознакомится в его паспорте.

Удаленный дисплей RUD512

LCD экран Удаленного дисплея RUD512 в общем виде выглядит так:

Удаленный дисплей программируется из Центра и может отражать следующие параметры:

  • Суммарную активную энергию, в том числе по тарифам (1…3) (в кВт*ч);
  • Реактивную индуктивную и емкостную энергию (в кВАр*ч).

При первом включении Удаленного дисплея в розетку на нем будет отражаться информация вида APP 5.4.04. После того, как счетчик будет сконфигурирован на отправку показаний на дисплей, на дисплее будут отображаться поочередно:

  • номер счетчика;
  • дата и время в формате ХХ ХХ-ХХ h (час день-месяц);
  • показания — суммарная активная энергия (при использовании дифференцированного тарифа по зонам суток — показания по тарифам).

Данные на Удаленном дисплее сменяются с дискретностью 1 раз в час. Удаленный дисплей необходимо оставить в розетке до тех пор, пока не отразятся данные по счетчику. После того, как Удаленный дисплей впервые отобразит данные по счетчику, его можно отключить из розетки и включать уже по мере необходимости. После повторного включения дисплея необходимо подождать некоторое время до того, как обновятся показания.

Дисплей поддерживает одновременно до 30-ти 1ф счетчиков или до 10-ти 3ф счетчиков. Но для удобства просмотра данных, оптимально его использовать на 3 — 5 счетчиков.

Подробнее о параметрах и характеристиках удаленного дисплея можно ознакомится в его паспорте.

Правила хранения

9.1. Хранить индикаторный глубиномер в футляре в сухом отапливаемом помещении при температуре воздуха от +5 до +40˚С и относительной влажности не более 80% при температуре +20˚С.

9.2. При длительном хранении изделия, во избежание возникновения коррозии помимо смазки индикаторного глубиномера маслом, его необходимо завернуть в бумагу с водоотталкивающей пропиткой.

9.3. Воздух в помещении не должен содержать примесей агрессивных паров и газов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector