Mio-tech-service.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое лапа двигателя

Условные обозначения электродвигателей

Электродвигатель — это электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла. В основу работы любого электродвигателяположен принцип электромагнитной индукции.

Как правило, электродвигатель состоит из статора (неподвижной части) и ротора (якоря в случае машины постоянного тока — подвижной части), электрическим током (или также постоянными магнитами), в которых создаются неподвижные и/или вращающиеся магнитные поля.

Монтаж электродвигателей, поставляемых в собранном виде

При монтаже электродвигателей руководствуются ПУЭ, и инструкциями завода-изготовителя.
Проверка фундамента при монтаже электродвигателей

Одной из основных операций подготовительных работ перед началом монтажа является проверка фундамента. Проверяют бетон, главные осевые размеры и высотные отметки опорных поверхностей, осевые размеры между отверстиями для анкерных болтов, глубину отверстий и размеры ниш в стенах фундаментов.

Подготовка электродвигателей к монтажу

Электродвигатели поступившие в собранном виде, на месте монтажа не разбирают, если их правильно транспортировали и хранили.

Подготовка таких машин к монтажу включает в себя следующие технические операции:

очистка фундаментных плит и лап станин;

промывка фундаментных болтов уайт-спиритом и проверку качества резьбы (прогон гаек);

осмотр выводов, щеточного механизма, коллекторов и контактных колец;

осмотр состояния подшипников;

проверка зазоров между крышкой и вкладышем подшипника скольжения, валом и уплотнением подшипников, измерение зазоров между вкладышем подшипника скольжения и валом;

проверка воздушного зазора между активной частью стали ротора и статора;

проверка свободного вращения ротора и отсутствие задеваний вентиляторов за крышки; проверка мега метром сопротивление изоляции всех обмоток , щеточной траверсы и изолированных подшипников.

Осмотр электродвигателей проводят на стенде в специально выделенном в цехе помещении.

О выявленных дефектах электромонтажник ставит в известность бригадира, мастера или руководителя монтажа.

Если наружных повреждений не обнаружено, электродвигатель продувают сжатым воздухом. При этом сначала проверяют подачу по трубопроводу сухого воздуха, для этого струю воздуха направляют на какую-нибудь поверхность. При продувке ротор электродвигателя проворачивают вручную, проверяя свободное вращение вала в подшипниках. Снаружи двигатель обтирают тряпкой, смоченной в керосине.

Промывка подшипников перед монтажом электродвигателя

Промывку подшипников скольжения во время монтажа производят следующим образом. Из подшипников удаляют остатки масла, отвернув спускные пробки. Затем, завинтив их, в подшипники заливают керосин и вращают руками якорь или ротор. Далее вывинчивают спускные пробки и дают стечь всему керосину. После промывки подшипников керосином их необходимо промыть маслом, которое уносит с собой остатки керосина. Только после этого их заполняют свежим маслом 1/2 или 1/3 объема ванны.

Смазку в подшипниках качения при монтаже машин не меняют. Заполнение смазкой подшипника не должно превышать 2/3 свободного объема подшипника.

Измерение сопротивления изобляции электродвигателя перед монтажем

Измерение сопротивления изоляции у электродвигателей постоянного тока производят между якорем и катушками возбуждения, проверяют сопротивление изоляции якоря, щеток и катушек возбуждения по отношению к корпусу. Если электродвигатель подключен к сети то при измерении изоляции необходимо отсоединить все провода, подведенные к электродвигателю от сети и реостата. Между щетками и коллектором при измерении помещают изолирующую прокладку из миканита, электрокартона и т.д.

У электродвигателя 3-фазного тока с короткозамкнутым ротором производят измерение сопротивление изоляции только обмоток статора по отношению друг к другу и к корпусу. Это можно сделать если только выведены все 6 концов обмотки. Если выведены только 3 конца обмоток, то измерение производят только по отношению к корпусу.

У электродвигателей с фазным ротором дополнительно измеряют сопротивление изоляции между ротором и статором, а также сопротивление изоляции щеток по отношению к корпусу (между кольцами щетками должны быть проложены изолирующие прокладки.)

Изоляцию обмоток электродвигателей измеряют мегомметром на 1 кВ для машин напряжением до 1 кВ, а для электродвигателей напряжением выше 1 кВ мегомметром на 2,5 кВ. Если результаты измерений сопротивления изоляции удовлетворяют нормам то эти электродвигатели могут быть включены в работу без сушки изоляции обмоток. Такие электродвигатели доставляют к месту монтажа, и устанавливают по месту.

Подъем электродвигателя массой до 50 кг можно выполнять вручную, при установке их на низкие фундаменты.

Соединение электродвигателей с механизмом

Соединение электродвигателей с механизмом выполняют с помощью муфт или через передачу (зубчатую, ременную). При всех способах соединения требуется проверка положения двигателя уровнем в горизонтальной плоскости в двух взаимно перпендикулярных направлениях. Для этого удобнее всего пользоваться «валовым» уровнем, т.к этот уровень имеет в основании выемку в виде «ласточкина хвоста»; его удобна накладывать непосредственно на вал электродвигателя.

Электродвигатели, устанавливаемые непосредственно на бетонном полу или фундаменте, выверяют, подкладывая под лапы электродвигателя металлические подкладки для регулирования их в горизонтальной плоскости. Дереванные прокладки не годятся т.к. они при заливке фундамента набухают и сбивают сделанную выверку , а при затяжке болтов спрессовываются.

При ременных передачах необходимо соблюдать параллельность валов электродвигателя и вращаемого им механизма, а также совпадение средних линий по ширине шкивов. Если ширина шкивов одинакова, а расстояние между центрами валов не превышает 1,5 м, выверку производят ,стальной выверочной линейкой.

Для этого линейку прикладывают к торцам шкивов и подгоняют электродвигатель, так чтобы линейка касалась двух шкивов в 4 точках. Если расстояние между центрами валов более 1,5 м, а выверочная линейка отсутствует, то выверку в этом случае производят с помощью струны и временно устанавливаемых на шкивы скоб. Центры валов подгоняют Для получения одинаковых расстояний от скоб до струны. Выверку также можно производить также тонким шнуром.

Центровка валов электродвигателей при монтаже

Центровку валов соединяемых между собой электродвигателей и механизмов выполняют для устранения их боковых и угловых смещений.

В монтажной практике чаще всего используют для этого радиально-осевые скобы. Перед началом центровки полумуфты разъединяют, а валы раздвигают, чтобы скобы и полумуфты не соприкасались. Конструкции радиально- осевых скоб изобразим на рис. Наружную скобу 6 закрепляют хомутом 5 на ступице полумуфты 3 установленной машины, а внутреннюю скобу 1 таким же хомутом закрепляют на ступице полумуфты 2 соединяемой машины. Соединение хомутов со скобами производят болтами 4 с гайками. С помощью измерительных болтов 7 устанавливают минимальные зазоры а и b

Читать еще:  Двигатель 421 газель тех характеристики

В процессе центровки измеряют боковые а и угловые b зазоры, используя щупы, индикаторы или микрометры. Индикатор или микрометрическую головку ставя та место болтов 7. При измерении щупом его пластинки вводят в зазор с ощутимым трением на глубину 20 мм. При замерах щупом возможны погрешности, которые зависят от человека, который делает эти замеры, его опыта. Результаты замеров контролируют. Для этого повороты валов и замеры повторяют.

При правильных замерах сумма числовых значений четных замеров должна равняться сумме числовых значений нечетных замеров: a1 + a3 = a2 + a4 и b1 + b3 = b2 + b4

C читают, что замеры выполнены правильно, если разница между этими суммами не превышает 0,03 – 0,04 мм. В противном случае, измерения повторяют более тщательно.

Затяжку гаек фундаментных болтов стандартными ключами без надставок равномерно в два – три обхода в требуемой последовательности. Начинают с фундаментных болтов, расположенных на осях симметрии опорной части, после чего затягивают ближайшие к ним болты, а затем, постепенно удаляясь от оси симметрии, остальные.

Если Вам понравилась эта статья, поделитесь ссылкой на нее в социальных сетях. Это сильно поможет развитию нашего сайта!

Конструкция асинхронных двигателей

В зависимости от способа выполнения обмотки ротора асинхронного двигателя последние разделяются на две большие группы: двигатели с короткозамкнутой обмоткой на роторе и двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами. Двигатели с короткозамкнутой обмоткой на роторе более дешевы в производстве, надежны в эксплуатации, имеют жесткую механическую характеристику, т. е. при изменении нагрузки от нуля до номинальной частота вращения машины уменьшается всего на 2-5%.

К недостаткам этих двигателей относятся трудность осуществления плавного регулирования частоты вращения в широких пределах, сравнительно небольшой пусковой момент, а также большие пусковые токи, в 5-7 раз превышающие номинальный. Указанными недостатками не обладают двигатели с контактными кольцами, однако конструкция ротора у них существенно сложнее, что ведет к удорожанию двигателя в целом. Поэтому их применяют в случае тяжелых условий пуска и при необходимости плавного регулирования частоты вращения в широком диапазоне.

Как указывалось, асинхронный электродвигатель имеет неподвижную часть — статор, на котором расположена обмотка, создающая вращающееся магнитное поле, и подвижную часть — ротор, в котором создается электромагнитный момент, приводящий во вращение сам ротор и исполнительный механизм. Сердечники статора и ротора набираются из изолированных листов электротехнической стали обычно толщиной 0,5 мм. Изоляция листов статора — лаковая пленка, ротора — окалина, образующаяся в процессе прокатки. Листы статора и ротора имеют пазы, в которых размещаются обмотки статора и ротора. Короткозамкнутая обмотка ротора обычно выполняется литой из алюминиевого сплава. В процессе заливки образуются как стержни (проводники) обмотки, расположенные в пазах, так и замыкающие их накоротко кольца, расположенные вне сердечника ротора. Кольца могут быть снабжены вентиляционными лопатками для улучшения вентиляции двигателя и теплоотвода от обмотки ротора. Отсутствие изоляции обмотки ротора обеспечивает хороший отвод тепла от обмотки к сердечнику.

Двигатели с короткозамкнутой обмоткой на роторе имеют ряд конструктивных исполнений по форме пазов на роторе. Форма пазов ротора выбирается в зависимости от требований к пусковым характеристикам двигателя. Наиболее рациональными для пазов ротора с одной клеткой являются трапецеидальные овальные пазы. Ротор называется глубокопазным, если высота паза ротора превышает глубину проникновения магнитного поля (для обмоток из алюминия двигателей промышленной частотой 50 Гц эта глубина равна 15 мм). В тех случаях, когда требуются большие значения пускового момента, применяется ротор с двойной клеткой, причем пазы в этом случае могут чередоваться. Пазы могут быть закрытыми или полузакрытыми. Короткозамыкающие кольца в случае литых двойных клеток выполняются общими для обеих клеток.

В ряде случаев обмотка двухклеточного двигателя выполняется из цветных металлов на основе меди. Тогда внешняя обмотка изготавливается из латуни или специальной бронзы, благодаря чему обеспечивается относительно большое ее активное сопротивление. Эта обмотка выполняет функции пусковой в асинхронном двигателе. Другая обмотка ротора — внутренняя — изготовляется из меди с минимальным активным сопротивлением. Она выполняет функции основной рабочей обмотки двигателя. Обе обмотки могут иметь круглые пазы, однако внутренняя обмотка в ряде случаев выполняется прямоугольной или овальной формы. Короткозамыкающие торцевые кольца для обеих обмоток обычно изготовляются из меди.

Общий вид асинхронного двигателя: подшипники — 1 и 11, вал — 2, подшипниковые щиты — 3 и 9, ротор — 5, статор — 6, вентилятор — 10, колпак — 12, ребра — 13, лапы — 14

Существуют другие модификации пазов ротора (бутылочного и трапецеидального профиля), однако описанные выше являются наиболее характерными для асинхронных двигателей. Асинхронные двигатели с фазным ротором обычно имеют полузакрытые пазы на роторе, в которые укладывается трехфазная обмотка с тем же числом полюсов, что и обмотка статора. Предварительно изолированные стержни этой обмотки заводят с торцевой стороны ротора. Фазы роторной обмотки обычно соединяют в звезду и подводят к трем контактным кольцам, расположенным на валу двигателя и изолированным друг от друга. В цепь обмотки фазного ротора с помощью контактных колец и соприкасающихся с ним щеток можно подключать добавочные сопротивления или вводить дополнительную ЭДС. Это используется при необходимости изменения рабочих или пусковых характеристик двигателей. Кроме того, с помощью контактных колец и щеток можно замыкать обмотку ротора накоротко.

Для уменьшения износа щеток в ряде конструкций ротора двигателей имеются специальные щеткоподъемные приспособления. С помощью этих устройств по окончании пуска двигателя контактные кольца замыкаются накоротко, а щетки приподнимаются и не участвуют в работе. Между ротором и статором асинхронного двигателя имеется воздушный зазор. При выборе воздушного зазора сталкиваются противоречивые тенденции. Минимальный (выбранный по механическим соображениям) воздушный зазор приводит к уменьшению тока холостого хода двигателя и увеличению коэффициента мощности. Однако при малом воздушном зазоре увеличиваются добавочные потери в поверхностном слое статора и ротора, добавочные моменты и шум двигателя. Вследствие роста потерь уменьшается КПД. Поэтому в современных сериях асинхронных двигателей воздушный зазор выбирается несколько большим, чем требуется по механическим соображениям (чтобы ротор при работе не задевал о статор).

Читать еще:  Что щелкает в двигателе хендай

Схемы соединения обмоток.

В асинхронных трехфазных двигателях используются два способа соединения фаз обмоток между собой: в звезду и треугольник. Эти соединения могут выполняться как внутри машины — глухое соединение, так и вне двигателя — с помощью сменных перемычек на специальном щитке, установленном на корпусе машины. В первом случае к выводному щитку подводятся три вывода, во втором — шесть выводов (начала и концы фаз). Внешнее соединение фаз наиболее удобно с точки зрения ее эксплуатации. В таком случае начала и концы фаз обмоток могут свободно отсоединяться при необходимости и подключаться к испытательной аппаратуре.

Питающее напряжение.

Асинхронные двигатели общего назначения обычно выпускаются для работы на двух напряжениях, например 127/220, 220/380 и 380/660 В. При меньшем из каждых двух напряжений фазы двигателя соединяются в треугольник, а при большем — в звезду. При внешнем соединении фаз двигателя сравнительно просто можно подключить его к одному из указанных на щитке напряжений. Некоторые электродвигатели выпускаются на одно напряжение, в этом случае фазы соединены в звезду.

Электротехнические материалы.

Для магнитопроводов (сердечников) статора и ротора асинхронных двигателей общего назначения широко применяются холоднокатаные низколегированные электротехнические стали. Они выпускаются в рулонах (лентах) нужной ширины, что позволило автоматизировать процесс штамповки листов и уменьшить отходы. Для двигателей серии 4А мощностью до 15-20 кВт применяется холоднокатаная сталь марки 2013 (нелегированная), а для машин большей мощности — сталь марки 2212 (слаболегированная). Для двигателей старых серий (А, А2) применялась горячекатаная сталь марки 1211. Применение холоднокатаных сталей позволило снизить расход стали на 10-15 и массу конструктивных деталей на 5-7% .

Изоляционные материалы применяются для изоляции токоведущих проводов, расположенных в одном пазу (друг от друга) — витковая изоляция, проводов разных фаз между собой — междуфазовая изоляция, проводов от заземленных сердечников — корпусная изоляция. Толщина изоляции определяется рабочим напряжением двигателя, классом нагревостойкости изоляции, условиями эксплуатации двигателя. В зависимости от предельно допускаемой температуры изоляционные материалы подразделяются на классы нагревостойкости. В свою очередь класс нагревостойкости изоляции (витковой, междуфазовой, корпусной) и пропиточных составов определяет допустимые превышения температуры для других частей двигателя в соответствии с ГОСТ 183-74.

В соответствии с ГОСТ 8865-70 изоляционные материалы разделены на семь классов нагревостойкости — У, А, Е, В, F, Н, С. Для изоляции асинхронных двигателей общего назначения обычно применяются четыре класса Е, В, F, Н с допустимыми температурами изоляционного материала 120, 130, 155, 180 °С соответственно. Обмоточные провода изготовляются с эмалевой, эмалево-волокнистой или волокнистой изоляцией. Толщина изоляционного слоя у проводов с эмалевой изоляцией в 1,5- 3 раза меньше, чем у проводов с волокнистой изоляцией; эмалевая изоляция, кроме того, лучше проводит тепло и является более влагостойкой. Поэтому в двигателях современных серий применяются в основном провода с эмалевой изоляцией марок ПЭТВ, ПЭТВМ (класс нагревостойкости В) и ПЭТВ, ПЭТ 155 (класс F). Провода ПЭТВМ и ПЭТМ разработаны для механизированной укладки обмоток. В двигателях напряжением 3 кВ и выше кроме указанных проводов применяются также провода со стекловолокнистой изоляцией марок ПСД и ПСДК. Диаметр изолированного провода при механизированной укладке всыпной обмотки не превышает 1,4-1,6 мм, при ручной укладке — до 1,8 мм.

Пазовая и междуфазовая изоляция.

В современных сериях двигателей широкое распространение получили композиционные материалы, представляющие собой сочетание полимерных пленок с различными гибкими электроизоляционными материалами на основе синтетических органических или неорганических волокон, причем указанные компоненты связаны между собой клеящими составами. Пленка принимает на себя основную электрическую и механическую нагрузки, в то время как другие компоненты выполняют функции армирующего материала, обеспечивающего необходимые технологические свойства композиции — жесткость, упругость, повышенную стойкость к механическим воздействиям и др.

Одной из важных функций волокнистых подложек является обеспечение надежной связи между поверхностями пазовой изоляции и прилегающими к ним катушками обмотки и сердечником за счет лучшей смачиваемости волокнистых материалов пропиточными составами по сравнению с пленками. Композиционные материалы обладают высокими механическими свойствами. Широко используются пленкосинтокартоны марок ПСК-Ф, ПСК-ЛП, состоящие из полиэтилентерефталатной пленки марки ПЭТФ, оклеенной с двух сторон бумагой из фенилонового или лавсанового волокна.

Для прокладок в лобовых частях применяют материалы с повышенным коэффициентом трения, такие, как пленкослюдопласт и пленкослюдокартон. Пропиточные и покровные составы. В двигателях современных серий широкое распространение нашли пропиточные составы без растворителей, что существенно уменьшило длительность процесса полимеризации, улучшило качество пропитки и теплопроводность изоляции. Для пропитки асинхронных двигателей современных серий применяются составы без растворителей марок КП-34, КП-50, КП-103. ЭКД-14, а также лаки с растворителями марок МЛ-92, ПЭ-933, КО-916К, КО-964Н. После пропитки и сушки на лобовую часть обмоток наносятся покровные составы для повышения стойкости обмотки к воздействию окружающей среды (пыль, масло, соляной туман, вредные примеси в воздухе и др.).

В качестве покровных составов применяют эмали ГФ92-ГС и ЭП91 (с растворителями) и компаунды КП-34, КП-50. Формы исполнения асинхронных двигателей определяются требованиями ГОСТ 2479-79 и разделяются на девять групп. Асинхронные двигатели серии 4А основного исполнения имеют четыре основные формы: IM 1081 — на лапах с двумя подшипниковыми щитами с одним цилиндрическим концом вала; IM 2081 — то же, что и IM 1081, но с фланцем на подшипниковом щите; IM 3081 — без лап с двумя подшипниковыми щитами, фланцем на подшипниковом щите и одним цилиндрическим концом вала со стороны привода; IM 9081 — встраиваемое исполнение с цилиндрической станиной (или без станины) с двумя подшипниковыми щитами и одним цилиндрическим концом вала со стороны привода. Как видно, условное обозначение двигателя по форме исполнения и способу монтажа состоит из латинских букв IM и четырехзначного числового индекса, первая цифра которого (от 1 до 9) определяет конструктивное исполнение, вторая и третья (от 00 до 99) — способ монтажа, четвертая (от 0 до 9) — условное обозначение конца вала. По степени защиты персонала от соприкосновения с токоведущим или движущимися частями, находящимися внутри машины, и попадания твердых посторонних тел и воды внутрь машины также существуют различные формы исполнения. В соответствии с ГОСТ 17494-72 для защиты электрических машин могут применяться 15 исполнений от IP00 до IP56. Для асинхронных двигателей напряжением до 1 кВ приняты две основные степени защиты IP23 и IP44.

Читать еще:  Что означает вечный двигатель

Для некоторых специальных исполнений двигателей, работающих в пыльных и влажных помещениях, могут быть приняты степени защиты IP54, IP56. Двигатели, работающие в закрытых помещениях, могут иметь степень защиты IP22. Обозначение по способу защиты состоит из латинских букв IP и двух цифр, первая из которых (от О до 6) указывает на степень защиты персонала от соприкосновения и попадания посторонних предметов внутрь машины, а вторая (от 0 до 8) — на степень защиты от попадания воды:
исполнение IP22 — защита двигателя от проникновения внутрь корпуса твердых тел диаметром более 12 мм и от капель воды, летящих под углом не более 15° к вертикали;
исполнение IP44 — защита от твердых тел размером более 1 мм и от брызг, летящих в любом направлении;
исполнение IP23 — то же, что и IP22, но с защитой от дождя (капли дождя под углом до 60° к вертикали).

Способ охлаждения двигателей регламентируется требованиями ГОСТ 20459-75. Асинхронные двигатели общего назначения выпускаются с двумя способами охлаждения — с самовентиляцией (лопатки вентилятора расположены на роторе двигателя) типа IC01 и с наружным вентилятором, расположенным на валу двигателя, типа IC0141. Обозначение способа охлаждения состоит из латинских букв , следующей за ними прописной буквы, обозначающей вид хладоагента (если охлаждение воздушное — эта буква опускается), и цифрового индекса, который указывает тип цепи для циркуляции хладоагента и способ его перемещения. В ряде модификаций двигателей применяются способы охлаждения IC0041 (естественное без вентилятора) и IC06 (охлаждение от пристроенного вентилятора, приводимого во вращение собственным двигателем).

Для решения вопроса укачивания проконсультируйтесь также с ветеринаром по следующим вопросам:

  • Что можно порекомендовать попробовать в первую очередь против укачивания кошки?
  • Есть ли лекарство, которое вы предлагаете мне попробовать?
  • Если я хочу попробовать Cerenia, вы готовы научить меня, как делать уколы?

Если у вас есть какие-либо вопросы или проблемы, вы всегда можете посетить или позвонить ветеринарному врачу — это лучшая возможност для вас по обеспечению здоровья и благополучия ваших домашних животных.

Лимфаденопатия: что это такое?

Увеличенные лимфатические узлы имеют вид мягких или плотных образований округлой формы, расположенных под нижней челюстью, в шейной, подмышечной, паховой или других областях. Они могут иметь гладкую или бугристую поверхность и очень часто развиваются после перенесённых инфекций и воспалений в острой форме. Иногда их появление спровоцировано травматическими повреждениями кожного покрова или введением вакцины.

Лимфаденопатия развивается вследствие скопления в лимфаденоидной ткани клеток определённого типа. Реакцию нередко провоцирует усиленный ток крови, увеличение количества лимфоцитов и макрофагов в ответ на появление в организме чужеродных генов. Буквально за одну неделю узел может увеличиться в пять-пятнадцать раз. О патологическом состоянии говорят в том случае, если наряду с превышением размера, налицо изменение плотности, подвижности и поверхности структуры. При ощупывании она может быть достаточно болезненной или безболезненной.

Поводы для обращения в наш центр диагностики лимфаденопатии в Москве: самостоятельное выявление крупных узлов, которые не болят, ощущение интенсивной боли во время прощупывания, другие симптомы в виде высыпания, повышения температуры тела, утраты веса, быстрой утомляемостью. Особенно опасными могут быть узлы, которые не проходят более двух месяцев, расположенные в разных областях, диаметром более двух сантиметров, увеличение которых произошло без видимых причин.

Как предотвратить патологии, и сохранить здоровье?

Заботливые хозяева знают о том, что лучшее решение – это проведение профилактических мероприятий на постоянной основе. Они включают выполнение следующих ритуалов:

  • ежедневный визуальный осмотр лапок на предмет повреждений и воспалений
  • плановые визиты в ветеринарную клинику
  • обработка лап антисептиками для предупреждения попадания в ткани грибков, бактерий

При своевременном начале лечения, которое подразумевает терапию антибиотиками, состояние животного удастся облегчить, а со временем полностью вернуть пушистому любимчику утраченное качество жизни.

Диагностика дисплазии у собак

Ответственные владельцы озабочены вероятностью развития дисплазии с раннего возраста щенка. В норме собаку на предмет патологии в юном возрасте осматривают несколько раз. Если порода находится не в группе риска, нет тревожных симптомов, то достаточно ручного осмотра ветеринаром.

Если вы изредка замечаете странные движения или реакции питомца, то снимите это на камеру и покажите врачу, возможно, так получится распознать первые признаки болезни.

Собак определенных пород прицельно обследуют на предмет заболеваний тазобедренных суставов. Профессиональные заводчики даже показывают рентгеновские снимки родителей, чтобы доказать, что генетический фактор передачи дисплазии исключен.

Для диагностики используют рентген, а также ручной осмотр больных конечностей. На ранних стадиях для определения дисплазии у собак применяют тест Ортолани. Тест обычно проводят под анестезией, поскольку мышечное напряжение мешает диагностике. Врач производит определенные манипуляции с конечностями, что позволяет определить, есть ли подвывих и дисплазия ТБС.

Рентген — наиболее надежный способ диагностирования дисплазии

Режим работы

Использовать электромеханический тормоз для торможения двигателя на ненулевой скорости рекомендуется только в аварийных случаях, поскольку в этом режиме резко повышается износ и нагрев тормозных колодок. Схема должна быть спроектирована таким образом, чтобы тормоз был стояночным, то есть включался только на нулевой скорости. Для этого в ПЧ имеется специальный выход. В таком режиме тормозные колодки почти не изнашиваются и имеют большой ресурс работы.

При частом использовании функции торможения происходит не только износ, но и нагрев тормоза. Если технологический процесс не позволяет сократить число торможений в единицу времени, следует предусмотреть дополнительный обдув тормоза, а также более ответственно подходить к его техобслуживанию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector