Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое радиатор охлаждения двигателя

Радиатор

Радиа́тор (новолат. radiātor — «излучатель») — устройство для рассеивания тепла в воздухе (излучением и конвекцией), воздушный теплообменник.

  • Радиатор отопления зданий.
  • Радиатор системы охлаждения для защиты от перегрева деталей:
    • Пассивной системы — в виде массивной металлической (алюминиевой, из алюминиевого сплава, медной) пластины с рёбрами или выступами, для увеличения тепловыделения (к примеру, цилиндров двигателя мотоцикла; электронных компонентов — радиодетали/микросхемы);
    • Активной системы — (напр. кулер для радиодеталей; жидкостной системы охлаждения двигателей внутреннего сгорания либо процессоров).

Автомобильный медный радиатор, или алюминиевый?

Радиатор нагревает воздух в системах отопления, кондиционирования и вентиляции. Охлаждает в системе рециркуляции отработанные газы, масло, которое находится в системе смазки, воздух системы турбонаддува и рабочую жидкость в случае с автоматической КПП. Существует несколько видов систем охлаждения: жидкостная, воздушная и комбинированная. В первом случае охлаждение происходит за счет потока жидкости, во втором –посредством воздуха, ну, а в третьем, соответственно, идет объединение воздушной и жидкостной систем.

Наиболее распространенным материалом, из которого изготавливается сердцевина современных радиаторов, является алюминий. Это обосновано тем, что автомобильные алюминиевые радиаторы охлаждения очень легкие, а их стоимость значительно ниже, чем медных. Однако они обладают очень малой теплопроводностью и подвержены коррозии. Автомобильный медный радиатор имеет больше достоинств, среди них: устойчивость к коррозии, высокий КПД, отличная теплопроводность. Также он является более прочным и, соответственно, долговечным. Но главный недостаток – высокая стоимость.

Еще до недавнего времени пользовались спросом радиаторы, сделанные из стали, однако из-за ее низкой теплопроводности, которая в четыре раза меньше, чем у алюминия, эти варианты сегодня практически нигде не встречаются.

Промо: Типология автомобильных радиаторов

История создания автомобильных радиаторов восходит к концу XIX – началу XX века

Змеевики

До тех пор, пока двигатели были небольшой мощности, излишняя теплота рассеивалась прямо от двигателя и его узлов. При увеличении мощности стали применять первые радиаторы – в виде гладкостенной медной трубы, изогнутой в виде змеевика. В 1900 году было применено наружное оребрение этого змеевика.

«Сотовые» радиаторы

При дальнейшем увеличении мощности двигателей (свыше 4 л.с.) такие простейшие радиаторы стали неэффективны, в первую очередь из-за слишком большого гидравлического сопротивления. В 1913 году появился первый пластинчатый паяный медно-латуный радиатор. Параллельно ему появилась конструкция радиатора, в которой воздух проходил по горизонтальным воздушным трубкам внутри бачка, количество этих трубок со временем становилось все больше, пока не получился сотовый радиатор, который был распространен до середины 30-х годов.

Схематичное изображение сотового радиатора

Трубчато-пластинчатые и трубчато-ленточные радиаторы

Сотовые радиаторы достаточно трудоемки в производстве, громоздкие и тяжелые. Основной стимул развития автомобильных теплообменников – увеличение мощности двигателей и сокращение подкапотного пространства – заставил разрабатывать более сложные конструкции. У радиаторов появляются латунные донья, куда запаиваются медные трубки, окруженные стальными пластинами (трубчато-пластинчатые медно-стальные радиаторы). Вследствие использования стальных пластин при производстве трубчато-пластинчатых радиаторов возникают множество недостатков такой конструкции – большой вес, минимальные показатели теплообмена, низкая коррозийная стойкость сердцевины, низкая вибрационная стойкость.

Фрагмент сердцевины трубчато-пластинчатого медно-стального радиатора

В дальнейшем своем развитии такие радиаторы получают медную ленту вместо стальных пластин (трубчато-пластинчатые медно-стальные радиаторы), что позволяет существенно увеличить их теплоотдачу. Такой радиатор весит гораздо меньше при значительном улучшении тепловых характеристик.

Сборные алюминиевые радиаторы

Сборные алюминиевые радиаторы стали разрабатываться в СССР во время «холодной войны». Так как медь являлась стратегическим сырьем, исследователи стали пытаться создать алюминиевые радиаторы паяной и сборной конструкции. Сборные радиаторы имеют меньшую теплоотдачу, но дешевле в производстве.

Первые попытки создания алюминиевых сборных радиаторов были предприняты на Мариупольском (Ждановском) радиаторном заводе для автомобиля ЗиС-120, но оказались не очень удачными, так как за основу была взята конструкция с плоскоовальными трубками. Плоскоовальные трубки было невероятно трудно уплотнять на торцах в месте соединения с доньями, из-за чего проект оказался очень дорогим и его скоро свернули. Радиаторов такого типа было сделано около 2 тысяч штук.

В дальнейшем создатель такого радиатора Курневич пришел к выводу, что необходимо в сборных радиаторах делать трубку круглого сечения на всю длину. К сожалению, он не успел сделать опытный образец по причине смерти, остались только чертежи, но этот проект тоже посчитали убыточным.

Идею алюминиевого сборного радиатора с круглыми трубками подхватила в дальнейшем французская фирма «Софико». Они же и получили патент на это изобретение, хотя такой радиатор впервые был изобретен в Советском Союзе!

Паяные (несборные) алюминиевые радиаторы

Первые шаги к наиболее современным теплообменникам – алюминиевым паяным радиаторам – были сделаны в 70-х года XX века. Первые радиаторы такой конструкции изначально были разработаны для автомобилей ГАЗ 3102. К сожалению, первый опыт оказался неудачным – алюминиевый паяный радиатор не справлялся теплоотдачей, особенно в городском режиме, и поэтому скоро был заменен медно-латунным. Однако причиной его слабой теплоотдачи являлось конструктивное исполнение алюминиевой ленты – ее шаг составлял примерно 8мм. Причина такой крупноячеистой конструкции сердцевины тривиальна – на заводе, выпускающем эти радиаторы, не было технологической возможности делать меньший шаг охлаждающей ленты.

Автомобиль ГАЗ 3102 (маленькая «Чайка»)

Но история автомобильных радиаторов на этом не заканчивается. Мы уверены, что нас ждет еще много открытий и инноваций в сфере автомобильных теплообменников.

Интересные разработки в области автомобильных радиаторов

Все развитие автомобильных теплообменников стремилось к увеличению теплоотдачи при сохранении габаритов и одновременном уменьшении стоимости. Темпы развития автомобильных радиаторов определялись быстрыми темпами развития автомобильных двигателей – мощности моторов росли очень быстро, и охладить его становилось все труднее.

В попытках добиться результата создавались различные интересные типы радиаторов, по каким-либо причинам не вошедших в серию. Наиболее интересные образцы представлены ниже:

Читать еще:  Датчик оборотов электро двигателя

— автотракторный радиатор. Интерес вызывает способ закрепления крышки бачков –крышка закрепляется при помощи болтов. Такой радиатор является ремонтопригодным, что особо важно для сельской местности.

— «безотходный» алюминиевый радиатор для автомобиля «МАЗ», разработанный Бурковым В.В. Представляет собой довольно оригинальную конструкцию; взамен охлаждающих пластин или лент фрезой на охлаждающей трубке «елочкой» нарезалось оребрение. Такой радиатор оказался довольно сложным в изготовлении и поэтому не получил широкого распространения.

— алюминиевый паяный радиатор отопителя для автобусов ЛиАЗ. Особый интерес этот радиатор вызывает в связи с использованием съемных патрубков радиатора. Такое решение скорее всего принято для унификации изделия – в условиях невозможности точно указать угол, в каком требуется зафиксировать патрубки, необходим изменяемый угол.

— алюминиевый сборный радиатор охлаждения с плоскоовальной трубкой для автомобилей PORSCHE. В то время как традиционный алюминиевый сборный радиатор имеет круглые охлаждающие трубки, радиатор с плоскоовальными трубками возвращает нас к первым попыткам создания сборного радиатора. Зачем создавать радиатор с плоскоовальными трубками? Площадь контакта набегающего потока воздуха с такой трубкой на 30% больше, чем с круглой – соответственно, и теплоотдача больше.

— радиаторы с биметаллической сердцевиной. При создании таких радиаторов использовались комбинации традиционных материалов – меди, латуни, алюминия, стали. Наиболее яркий пример – сборный радиатор с круглыми алюминиевыми охлаждающими трубками и медными пластинами.

Материалы предоставлены компанией LUZAR — производителем автомобильных радиаторов

Устройство современного радиатора

Радиатор охлаждения ДВС, как правило, имеет два бачка (нижний и верхний), сердцевину, в которой охлаждается жидкость (антифриз или тосол), и несколько дополнительных деталей для крепления. Жидкость от охлаждающей рубашки двигателя поступает в радиатор, где ее температура понижается до требуемого значения, затем антифриз снова передается двигателю. Для изготовления сердцевины и бачков используются легкие металлы: или алюминий, или латунь. Благодаря их высокой теплопроводности они обеспечивают эффективное и быстрое охлаждение антифриза.

Сердцевина радиатора состоит из горизонтально расположенных металлических пластин, соединенных с полыми трубками, идущими вертикально вниз от верхнего бачка к нижнему бачку. Таким образом, при движении через сердцевину жидкость разбивается на несколько потоков, и происходит увеличение площади ее соприкосновения с воздухом атмосферы, ведущее к повышению интенсивности охлаждения.

Патрубки радиатора позволяют соединять бачки с рубашкой охлаждения двигателя. Нижний бачок имеет, как правило, сливной краник, через который можно слить жидкость. Подобным краником снабжена и рубашка двигателя. Антифриз заливается внутрь системы охлаждения через горловину верхнего бачка.

Функционирование систем охлаждения современных автомобилей происходит с учетом значения температуры:

  • двигателя;
  • охлаждающей жидкости;
  • окружающей среды;
  • масла и т. д.

Действие системы охлаждения можно объяснить следующим образом. Нагретая двигателем жидкость направляется насосом через патрубки в радиатор, в котором обеспечивается понижение ее температуры. После чего охлажденная жидкость (антифриз) снова подается в рубашку двигателя, и далее цикл повторяется.

Для повышения эффективности теплообмена на автомобилях перед радиатором устанавливается вентилятор иногда с механическим, но чаще с электрическим приводом, нагнетающий воздух в его сердцевину.

Сердцевины радиаторов автомашин могут быть:

  • трубчато-пластинчатыми;
  • трубчато-ленточными.

В первом случае охлаждающие трубки могут иметь расположение:

  • шахматное;
  • под углом;
  • в ряд.

Ребра у радиаторов, относящихся к типу трубчато-пластинчатых, бывают либо плоскими, либо волнистыми, и могут иметь разный размер. Кроме того, для усиления теплопередачи на них иногда делают специальные турбулизаторы (просечки, отогнутые и образующие узкие проходы для воздуха).

У радиаторов, называемых, трубчато-ленточными, охлаждающие трубки всегда расположены в ряд, а для изготовления ленты их решеток используется медный лист толщиною от 0,05 миллиметра до 0,1 миллиметра. Чтобы усилить теплоотдачу с помощью завихрений, на ленте выполняют фигурные отверстия методом штамповки или создают отогнутые просечки.

Сегодня наибольшее распространение получили радиаторы охлаждения автомобиля, изготовленные на основе алюминиевых сплавов. Такие устройства дешевле и легче латунных аналогов, но уступают последним по надежности и сроку службы. Еще одним достоинством радиаторов из латуни является то, что они проще ремонтируются: их можно паять. В то время как радиатор системы охлаждения, известный как алюминиевый, более сложен в ремонте, так как его детали и конструктивные элементы соединяют между собой с использованием завальцовки и герметизирующих материалов.

Как работает радиатор охлаждения двигателя

В процессе работы двигателя внутреннего сгорания (ДВС) температура внутри блока цилиндров может достигать 2000°С. Для того что бы двигатель работал в заданном температурном режиме его надо охлаждать, иначе силовой агрегат попросту перегреется и выйдет из строя. Поэтому охлаждение ДВС – одна из важнейших задач, которую решают конструкторы современных машин, совершенствуя и модернизируя как отдельные детали, так и всю систему целиком.

Функциональное предназначение

Главным элементом, входящим в систему охлаждения ДВС, по праву считается радиатор. Именно эта деталь позволяет эффективно и быстро приводить к заданным параметрам температуру охлаждающей жидкости (ОЖ), поддерживая необходимый режим и защищая мотор от перегрева.

Существующие в настоящее время системы охлаждения двигателя, помимо ключевых задач, выполняют целый комплекс вспомогательных функций, повышая тем самым комфорт и качество эксплуатации транспортного средства:

  • сохранение комфортного уровня температуры внутри салона при работе системы отопления, климат-контроля;
  • отвод излишков тепла от картера смазочной системы;
  • охлаждение отработанных выхлопных газов;
  • поддержание нормальных эксплуатационных параметров рабочей среды в автоматической коробке переключения передач (АКПП);

Конструктивные особенности

Радиаторы всех транспортных средствимеют приблизительно одинаковый конструктив, который состоит из следующих основных элементов:

  • верхний и нижний баки (иногда левый и правый);
  • соты из металлических пластин;
  • трубкипо которым циркулирует антифриз;
  • вентилятор;
  • крепежные детали и элементы.

Непосредственно функцию охлаждения выполняет именно сердцевина радиатора, представляющая собой систему тонких поперечных пластин, сквозь которые проложены тонкие вертикальные трубки. Жидкость, поступающая в эти трубки, расходится на множество потоков, что позволяет обеспечить ее интенсивное охлаждение и направление к мотору по замкнутому контуру.

Читать еще:  Что такое ncb двигатель

Верхний и нижний баки радиатора совмещены с корпусом и системой трубок специальными патрубками. Нижний бачок имеет специальное устройство – краник для слива ОЖ. Еще один такой кран присутствует в конструкции рубашки мотора.

Сердцевина радиатора охлаждения двигателя бывает двух видов:

  1. Трубчато-пластинчатой. Наиболее распространенный вариант. Трубки при этом могут располагаться в шахматном порядке, под углом или в ряд. Ребра имеют либо плоскую, либо волнистую форму. Допускаются разные размеры трубок по длине.
  2. Трубчато-ленточный. Охлаждающие трубки всегда расположены в ряд. Основной материал изготовления – медь. Толщина, как правило, находится в пределах 0,05 – 0,1 мм.

Для современных автомобилейрадиаторы все чаще изготавливаются из алюминиевых сплавов, что удешевляет их себестоимость и снижает вес изделия..

Особенности функционирования

Система охлаждения двигателя работает и обеспечивает высокую эффективность отведения излишков тепловой энергии от силового агрегата в следующей последовательности:

  • Тосол (или антифриз), под воздействием специального водяного насоса, находится в постоянном движении, циркулируя по герметичному, замкнутому контуру.
  • ОЖ забирает часть тепловой энергии и отводит ее от корпуса мотора.
  • Далее жидкость направляется в радиатор, где происходит охлаждение, отвод тепла в атмосферу. На этом рабочий цикл заканчивается и повторяется вновь в той же последовательности.

В целях повышения эффективности ОЖ перед корпусом радиатора установленспециальный вентилятор. Его задача – прогонять воздух, активизируя процесс охлаждения тосола или антифриза.

Поддержание радиатора в технически исправном состоянии – одно из важнейших условий эффективногофункционирования системы охлаждения, работы двигателя и автомобиля в целом.Для того что бы он служил долго и эффективно и выполнял свои задачи, надо регулярно промывать его наружную поверхность, от слоя пыли и грязи ,которые, сильно снижает эффективность его работы.

История появления радиатора

Использовать систему охлаждения ДВС, в которой теплоносителем являлась вода, стали еще на заре автомобилестроения. Впервые радиатор установили на автомобиле Benz Velo, свободно продававшимся начиная с 1886 года. Эта техническая идея в дальнейшем была развита немецким предпринимателем Вильгельмом Майбахом, сконструировавшим охлаждающее устройство с сотами. Его разработку вскоре применили в конструкции автомобиля Mercedes 35HP (цифра «35» в его обозначении, должна была говорить, что его мощность в лошадиных силах равна 35). В дальнейшем, вплоть до нашего времени, конструкция радиатора охлаждения существенно не изменялась.

Первые водяные системы охлаждения для автомобильных двигателей не имели насосов (помп), принуждающих охлаждающую жидкость (ОЖ) к движению по замкнутому кругу, и работали по принципу термосифона. То есть, движение воды возникало из-за того, что при нагреве ее плотность уменьшалась, и она начинала перемещаться вверх. В результате подогретая жидкость попадало в охлаждающее устройство, проходя через его верхний патрубок.

Оказавшись внутри радиатора, вода становилась более прохладной, ее плотность возрастала, и она опускалась вниз, а пройдя нижний патрубок, снова проникала в рубашку двигателя. Но в связи с постоянным ростом мощности ДВС системы, использующие эффект термосифона, очень скоро стали не пригодными для более новых автомобилей. Они достаточно быстро были вытеснены решениями, включавшими жидкостные насосы (помпы) центробежного типа.

Автомобили и мотоциклы

В автомобилях и мотоциклах с двигателем внутреннего сгорания с жидкостным охлаждением радиатор соединен с каналами, проходящими через двигатель и головку блока цилиндров , по которым перекачивается жидкость (охлаждающая жидкость) . Эта жидкость может быть водой (в климате, где маловероятно замерзание воды), но чаще представляет собой смесь воды и антифриза в пропорциях, соответствующих климату. Сам антифриз обычно представляет собой этиленгликоль или пропиленгликоль (с небольшим количеством ингибитора коррозии ).

Типичная автомобильная система охлаждения включает:

  • ряд галерей, отлитых в блоке цилиндров и головке цилиндров, окружающих камеры сгорания циркулирующей жидкостью для отвода тепла;
  • радиатор, состоящий из множества небольших трубок, снабженных решеткой из ребер для быстрого рассеивания тепла, который принимает и охлаждает горячую жидкость от двигателя;
  • водяной насос , обычно центробежного типа, для циркуляции теплоносителя по системе;
  • термостат для регулирования температуры путем изменения количества охлаждающей жидкости , идущей к радиатору;
  • вентилятор для втягивания холодного воздуха через радиатор.

Радиатор передает тепло от жидкости внутри к воздуху снаружи, тем самым охлаждая жидкость, которая, в свою очередь, охлаждает двигатель. Радиаторы также часто используются для охлаждения жидкостей для автоматических трансмиссий , хладагента кондиционера , всасываемого воздуха , а иногда и для охлаждения моторного масла или жидкости рулевого управления с гидроусилителем . Радиаторы обычно устанавливаются в положении, в котором они получают воздушный поток от движения автомобиля вперед, например, за передней решеткой. Если двигатели устанавливаются посередине или сзади, обычно радиатор устанавливают за передней решеткой, чтобы обеспечить достаточный воздушный поток, даже если для этого требуются длинные трубы охлаждающей жидкости. В качестве альтернативы радиатор может втягивать воздух из потока над автомобилем или из боковой решетки. Для длинных транспортных средств, таких как автобусы, боковой поток воздуха наиболее часто используется для охлаждения двигателя и трансмиссии, а верхний поток воздуха — наиболее распространен для охлаждения кондиционера.

Конструкция радиатора

Автомобильные радиаторы состоят из пары металлических или пластиковых напорных баков, соединенных сердечником с множеством узких проходов, что дает большую площадь поверхности по сравнению с объемом. Это ядро, как правило , изготовлены из сложенных слоев металлического листа, прессуют в каналах и припаяны или спаяны вместе. В течение многих лет радиаторы изготавливались из латунных или медных сердечников, припаянных к латунным патрубкам. Современные радиаторы имеют алюминиевые сердечники и часто позволяют сэкономить деньги и вес за счет использования пластиковых коллекторов с прокладками. Эта конструкция более подвержена поломкам и труднее ремонтируется, чем традиционные материалы.

Читать еще:  Что такое двигатель longlife

Более ранним методом строительства был сотовый радиатор. Круглые трубки были обжаты на шестиугольники на концах, затем сложены вместе и спаяны. Поскольку они касались только своими концами, это образовывало то, что фактически превратилось в твердый резервуар для воды с множеством воздушных труб, проходящих через него.

В некоторых старинных автомобилях используются сердечники радиатора из спиральной трубы, менее эффективная, но более простая конструкция.

Насос охлаждающей жидкости

В радиаторах сначала использовался нисходящий вертикальный поток, приводимый исключительно в действие термосифонным эффектом. Охлаждающая жидкость нагревается в двигателе, становится менее плотной и поэтому поднимается вверх. По мере того как радиатор охлаждает жидкость, охлаждающая жидкость уплотняется и опускается. Этот эффект достаточен для маломощных стационарных двигателей , но недостаточен для всех автомобилей, кроме самых ранних. Все автомобили в течение многих лет использовали центробежные насосы для циркуляции охлаждающей жидкости двигателя, поскольку естественная циркуляция имеет очень низкую скорость потока.

Нагреватель

Система клапанов или перегородок, или и то, и другое обычно включается для одновременной работы небольшого радиатора внутри транспортного средства. Этот небольшой радиатор и связанный с ним вентилятор называется сердцевиной отопителя и служит для обогрева салона. Как и радиатор, сердцевина нагревателя отводит тепло от двигателя. По этой причине, автомобильной техники часто советуют операторам включить на нагреватель и установить его на высоком уровне, если двигатель перегревается , чтобы помочь основной радиатор.

Контроль температуры

Контроль расхода воды

Температура двигателя в современных автомобилях в основном контролируется термостатом типа восковых гранул , клапаном, который открывается, как только двигатель достигает своей оптимальной рабочей температуры .

Когда двигатель холодный, термостат закрыт, за исключением небольшого перепускного потока, так что термостат изменяет температуру охлаждающей жидкости по мере прогрева двигателя. Охлаждающая жидкость двигателя направляется термостатом на вход циркуляционного насоса и возвращается непосредственно в двигатель, минуя радиатор. Направление воды, циркулирующей только через двигатель, позволяет двигателю как можно быстрее достичь оптимальной рабочей температуры, избегая при этом локальных «горячих точек». Когда охлаждающая жидкость достигает температуры срабатывания термостата, он открывается, позволяя воде проходить через радиатор, предотвращая повышение температуры.

После достижения оптимальной температуры термостат регулирует поток охлаждающей жидкости двигателя к радиатору, чтобы двигатель продолжал работать при оптимальной температуре. В условиях пиковой нагрузки, например, при медленной езде по крутому склону с большой нагрузкой в ​​жаркий день, термостат будет приближаться к полному открытию, потому что двигатель будет вырабатывать почти максимальную мощность, а скорость воздушного потока через радиатор мала. (Скорость воздушного потока через радиатор имеет большое влияние на его способность рассеивать тепло.) И наоборот, при быстром спуске по автостраде холодной ночью с небольшим дросселем термостат будет почти закрыт, потому что двигатель производит малая мощность, а радиатор способен рассеивать гораздо больше тепла, чем производит двигатель. Допуск слишком большого потока охлаждающей жидкости к радиатору приведет к переохлаждению двигателя и работе при температуре ниже оптимальной, что приведет к снижению топливной эффективности и увеличению выбросов выхлопных газов. Кроме того, долговечность, надежность и долговечность двигателя иногда оказываются под угрозой, если какие-либо компоненты (например, подшипники коленчатого вала ) спроектированы с учетом теплового расширения, чтобы соответствовать друг другу с правильными зазорами. Еще один побочный эффект переохлаждения — снижение производительности обогревателя кабины, хотя в типичных случаях он по-прежнему выдувает воздух со значительно более высокой температурой, чем температура окружающей среды.

Таким образом, термостат постоянно перемещается во всем диапазоне, реагируя на изменения рабочей нагрузки автомобиля, скорости и внешней температуры, чтобы поддерживать оптимальную рабочую температуру двигателя.

На старинных автомобилях вы можете найти термостат сильфонного типа, который имеет гофрированный сильфон, содержащий летучую жидкость, такую ​​как спирт или ацетон. Эти типы термостатов плохо работают при давлении в системе охлаждения выше примерно 7 фунтов на квадратный дюйм. Современные автомобили обычно работают под давлением около 15 фунтов на квадратный дюйм, что исключает использование термостата сильфонного типа. В двигателях с прямым воздушным охлаждением это не касается сильфонного термостата, который управляет откидным клапаном в воздушных каналах.

Контроль воздушного потока

На температуру двигателя влияют и другие факторы, в том числе размер радиатора и тип вентилятора радиатора. Размер радиатора (и, следовательно, его охлаждающая способность ) выбирается таким образом, чтобы он мог поддерживать расчетную температуру двигателя в самых экстремальных условиях, с которыми может столкнуться автомобиль (например, подъем на гору с полной загрузкой в ​​жаркий день). .

Скорость воздушного потока через радиатор оказывает большое влияние на рассеиваемое им тепло. Скорость автомобиля влияет на это примерно пропорционально усилию двигателя, давая тем самым грубую обратную связь с саморегулированием. Если двигатель приводится в действие дополнительным охлаждающим вентилятором, он также отслеживает скорость двигателя аналогичным образом.

Вентиляторы с приводом от двигателя часто регулируются с помощью муфты вентилятора от приводного ремня, которая проскальзывает и снижает скорость вращения вентилятора при низких температурах. Это улучшает топливную экономичность, поскольку не тратит энергию на привод вентилятора без надобности. На современных автомобилях дальнейшее регулирование скорости охлаждения обеспечивается вентиляторами радиатора с регулируемой скоростью или циклическим переключением. Электровентиляторы управляются термостатическим выключателем или блоком управления двигателем . Электрические вентиляторы также имеют преимущество в том, что они обеспечивают хороший воздушный поток и охлаждение при низких оборотах двигателя или в неподвижном состоянии, например, в медленно движущемся транспортном потоке.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector