Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое реактивный ток двигателя

Что такое реактивная мощность и как её рассчитать?

Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.

Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2 )

квар = √ (кВА 2 – кВт 2 )

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Активная и реактивная мощность

Активная и реактивная мощность

Сообщение chegevara » 19 май 2017, 14:30

Активная и реактивная мощность

Сообщение Ryzhij » 19 май 2017, 16:04

Активная и реактивная мощность

Сообщение rwg » 19 май 2017, 18:00

Активная и реактивная мощность

Сообщение Михайло » 20 май 2017, 09:33

Для полноты и точности картины важно понимать, что единственным реальным током является полный ток. В сетях переменного тока есть такая досада — генератор выдает потребителю большой ток (полный ток), а фактически потребитель (двигатель) вырабатывает мощность чуть ниже, чем если считать по полному току. Неприятно это тем, что провода, автоматические выключатели и т.п. рассчитываются по полному току, имеют большое сечение, большие габариты, но при этом происходит недоиспользование возможностей.
Теперь о причинах этой картины. Картина становится ясной, если посмотреть картинку из учебника, где напряжение опережает ток и показаны графики мгновенной мощности (полной мощности).

Почему ток отстает от напряжения по фазе? Ответ: потому что ток определяется нагрузкой. Если нагрузка индуктивная, то она по ранее изученному закону Ленца сдвигает ток относительно напряжения в сторону отставания. Получается так, что генератор как бы пихает энергию в нагрузку, а та отталкивает ее в некоторой части обратно в силу своей природы.

Активных и реактивных токов, активной и реактивной мощности фактически не существует, это чисто математические фокусы а-ля комплексных чисел. Тем не менее нужно уметь это все вычислять, чтобы правильно подбирать индуктивности, емкости, сопротивления и т.п. Активная мощность (ток) — это та доля, которая фактически потребилась потребителем, реактивная мощность (ток) — эта доля, которую нагрузка «оттолкнула» обратно в генератор. Соответственно нужно стремиться увеличить активную составляющую и уменьшить реактивную, чтобы было максимальное использование мощности сети, максимальный косинус фи, активная составляющая равнялась полной.

Компенсация реактивной мощности: если в схему с индуктивностью добавить немного емкости (не перебарщивая), то мы будем наблюдать, что получившаяся схема увеличила свой коэффициент мощности (косинус фи). Это называется компенсацией реактивной мощности. Хитрость заключается в том, что как раз в те моменты времени, когда индуктивная нагрузка выталкивает из себя энергию, емкостная нагрузка желает потребить эту энергию. Можно убедиться в этом, если построить графики мгновенной мощности для индуктивности и емкости при переменном напряжении.

При компенсации реактивной мощности индуктивность и емкость как бы дополняют друг друга, они обмениваются между собой реактивной мощностью, не занимая при этом источник энергии. Для источника энергии компенсированная нагрузка представляет собой нагрузку с высоким косинусом фи. Компенсация реактивной мощности представляет собой реальное техническое решение проблемы недоиспользования мощности.
Есть еще понятия «резонанс токов» и «резонанс напряжений» — это названия для тех случаев, когда индуктивности добавляют ровно столько емкости, чтобы не переборщить. Это оптимальные случаи компенсации реактивной мощности для параллельного и последовательного соединения реактивных нагрузок. Подробности — в учебниках.

***
А еще у нас преподаватель постоянно просил дать определение реактивной энергии. Если реактивная мощность еще как-то математически определена, то реактивной энергии не существует даже математически. Например, говорить «компенсация реактивной энергии» некорректно. Это просто к слову.

Читать еще:  Двигатель ahs технические характеристики

Активная и реактивная мощность

Сообщение Ryzhij » 21 май 2017, 05:23

Мощность, ЛЮБАЯ, это энергия в единицу времени.
Не бывает такого, что вот мощность есть, а энергии нет.

Это так, к слову 😉

Активная и реактивная мощность

Сообщение Михайло » 21 май 2017, 06:15

Активная и реактивная мощность

Сообщение Ryzhij » 21 май 2017, 08:23

Активная и реактивная мощность

Сообщение Михайло » 21 май 2017, 15:21

Активная и реактивная мощность

Сообщение Jackson » 22 май 2017, 12:14

Активная и реактивная мощность

Сообщение Jackson » 22 май 2017, 15:15

Это не совсем так. Реактивную мощность нельзя забрать или отдать — она болтается туда-сюда как селёдка по закрытой банке и никуда не девается. Чтобы забрать мощность, её нужно куда-то передать, соответственно чтобы отдать — её нужно где-то взять. Это первое.

Второе. Мощность генератора будет такой, какова его нагрузка (нет нагрузки — нет никакой мощности) по отношению к этому генератору. Генератор сам по себе эту мощность не выдаст — закон сохранения.

Так что когда Вы говорите про двигатель — говорите какую нагрузку он создаёт. А когда говорите про генератор — говорите про то какую нагрузку он на себя принял. Если нормально нагрузка у нас индуктивная, то и на генератор она ляжет индуктивная.

Третье. Случай параллельной работы генераторов, когда мощность — как активная так и реактивная распределяются между двумя источниками. Это два независимых (по управлению и в теории) параметра генератора — активная мощность и реактивная.
С активной мощностью при параллельной работе всё просто: если она положительна значит генератор генерирует, если отрицательна — потребляет (и подкручивает собой приводной двигатель). Это называется обратная мощность или двигательный режим. Но солярку при этом приводной двигатель вырабатывать, к сожалению, не будет.

С реактивной принцип тот же, но чуть сложнее для понимания. Если нормально нагрузка индуктивная, то нормально и на генераторах она индуктивная, но может получиться так что на одном генераторе реактивной мощности вовсе не будет, или она будет даже емкостная (при общей индуктивной) — это значит что этот генератор недостаточно возбуждён и требуется энергия для того чтобы поддерживать его напряжение (шины-то общие), чем он дополнительно нагружает другой генератор. Может быть даже так что общая нагрузка чисто активна, но из-за разного возбуждения генераторов на одном видим cosФ = 0,8i, а на другом — 0,8c.

Где-то каша в голове — либо у Вас либо у автора сего.

Продолжим. Каналы управления генераторами при их параллельной работе по активной и реактивной мощности разные и независимые. Активная мощность создаёт тормозной момент на валу генератора, значит чем больше дадим топлива (газу) тем больше он возьмёт на себя активной мощности, и наоборот. можно отрегулировать его так чтобы он активной мощности ни выдавал ни потреблял, всю активную мощность возьмут на себя другие источники, с которыми он работает параллельно.
Реактивная мощность никакого момента в теории на валу не создаёт (на практике создаёт но очень незначительный и не у всех генераторов), но определяется степенью возбуждения генератора, то есть регулируя ток возбужения (так же как и топливо — больше/меньше) можно добиться чтобы генератор взял на себя реактивную нагрузку, начал наоборот создавать её, или работал в 0. Как и с активной мощностью.

Теперь про санитара леса. Раз каналы управления разными мощностями разные, то логично, если не создавать момент на валу (работать с 0 активной мощностью) кидать на генератор реактивную нагрузку. Эта идея одно время широко применялась на судах, где валогенератор, что приводился в движение главным двигателем вместе с гребным винтом, работал в режиме т.н. синхронного компенсатора: включается в судовую сеть как обычный генератор, но регулируется так что активной мощности на себя не берёт и соответственно главный двигатель не нагружает, а реактивную нагрузку принимает на себя сколько может чем разгружает остальные генераторы. Генератор с собственным независимым приводом в таком режиме гонять бессмысленно экономически — двигатель все равно будет его вращать, топливо потреблять, ресурс расходоваться а без нагрузки ДВСы и малые турбины плохо работают (точнее очень недолго). Но если уже есть какой-то приводной двигатель который что-то вращает, то можно навесить на него ещё и синхронный генератор и включить его в сеть — пусть берёт на себя только реактивную нагрузку.

Только это выливается в требования к автоматике, редуктор нужно с отбором мощности сделать, сам генератор небесплатный и габаритный, и на технологию повлияет. Например на судне, которое идёт с включенным валогенератором, у капитана нет свободы манёвра потому что обороты ГД должны быть постоянными (иначе он всю судовую электросеть завалит) — значит делаются гребные винты регулируемого шага со своей непростой механикой и автоматикой. Короче нюансов много и далеко не везде это применимо. Но на океанских торговых судах оправдано — на трансокеанском переходе в течение недели-двух а то и больше никаких маневров не планируется, незачем гонять независимые генераторы, когда главный двигатель всё равно крутится и всё время с постоянными оборотами — тут либо полностью переходят на валогенератор, либо используют валогенератор как раз в режиме синхронного компенсатора.

Читать еще:  Двигатели фф2 какой выбрать

Способы компенсации двух видов реактивной мощности:

Индуктивн ая нагрузк а (фазовое опережение тока относительно напряжения) компенсиру ется конденсаторами или синхронными двигателями .

Е мкостн ая нагрузка (фазовое отставание тока относительно напряжения) компенсиру ется дросселями или реакторами.

Полностью выровнять фазы между током и напряжением невозможно, но, даже повысив cos φ с обычных 0,5-0,6 до 0,95-0,97, можно добиться экономического эффекта в 45-50%.

Как и где измеряют cos φ

Реактивная мощность проверяется по изменению cos φ специальным прибором – фазометром. Его шкала проградуирована в количественных значениях cos φ от нуля до единицы в индуктивном и емкостном секторе. Полностью скомпенсировать негативное влияние индуктивности не удастся, но возможно приближение к желаемому показателю – 0,95 в индуктивной зоне.

Фазометры применяются при работе с установками, способными повлиять на режим работы электросети через регулирование cos φ.

  1. Так как при финансовых расчетах за потребленную энергию учитывается и ее реактивная составляющая, то на производствах устанавливаются автоматические компенсаторы на конденсаторах, емкость которых может меняться. В сетях, как правило, используются статические конденсаторы;
  2. При регулировании cos φ у синхронных генераторов путем изменения возбуждающего тока необходимо его отслеживать визуально в ручных рабочих режимах;
  3. Синхронные компенсаторы, представляющие собой синхронные двигатели, работающие без нагрузки, в режиме перевозбуждения выдают в сеть энергию, которая компенсирует индуктивную составляющую. Для регулирования возбуждающего тока наблюдают за показаниями cos φ по фазометру.

Коррекция коэффициента мощности – одна из эффективнейших инвестиций для сокращения затрат на электроэнергию. Одновременно улучшается качество получаемой энергии.

Активная и реактивная мощность

В понятиях активная и реактивная мощность сталкиваются противоречивые интересы потребителей электрической энергии и ее поставщиков. Потребителю выгодно платить только за потребленную им полезную электроэнергию, поставщику выгодно получать оплату за сумму активной и реактивной электроэнергии. Можно ли совместить эти кажущиеся противоречивыми требования? Да, если свести количество реактивной электроэнергии к нулю.

Активная мощность

Существуют потребители электроэнергии, у которых полная и активная мощности совпадают. Это потребители, у которых нагрузка представлена активными сопротивлениями (резисторами). Среди бытовых электроприборов примерами подобной нагрузки являются лампы накаливания, электроплиты, жарочные шкафы и духовки, обогреватели, утюги, паяльники и пр.

Указанная у этих приборов в паспорте, одновременно является активная и реактивная мощность . Это тот случай, когда мощность нагрузки можно определить по известной из школьного курса физики формуле, перемножив ток нагрузки на напряжение в сети. Ток измеряется в амперах (А), напряжение в вольтах (В), мощность в ваттах (Вт). Конфорка электрической плиты в сети с напряжением 220 В при токе в 4,5 А потребляет мощность 4,5 х 220 = 990 (Вт).

Реактивная мощность

Иногда, проходя по улице, можно увидеть, что стекла балконов покрыты изнутри блестящей тонкой пленкой. Эта пленка изъята из бракованных электрических конденсаторов, устанавливаемых с определенными целями на питающих мощных потребителей электрической энергии распределительных подстанциях. Конденсатор – типичный потребитель реактивной мощности. В отличие от потребителей активной мощности, где главным элементом конструкции является некий проводящий электричество материал (вольфрамовый проводник в лампах накаливания, нихромовая спираль в электроплитке и т.п.). В конденсаторе главный элемент – не проводящий электрический ток диэлектрик (тонкая полимерная пленка или пропитанная маслом бумага).

Реактивная емкостная мощность

Красивые блестящие пленки, что вы видели на балконе – это обкладки конденсатора из токопроводящего тонкого материала. Конденсатор замечателен тем, что он может накапливать электрическую энергию, а затем отдавать ее – своеобразный такой аккумулятор. Если включить конденсатор в сеть постоянного тока, он зарядится кратковременным импульсом тока, а затем ток через него протекать не будет. Вернуть конденсатор в исходное состояние можно, отключив его от источника напряжения и подключив к его обкладкам нагрузку. Некоторое время через нагрузку будет течь электрический ток, и идеальный конденсатор отдает в нагрузку ровно столько электрической энергии, сколько он получил при зарядке. Подключенная к выводам конденсатора лампочка может на короткое время вспыхнуть, электрический резистор нагреется, а неосторожного человека может «тряхнуть» или даже убить при достаточном напряжении на выводах и запасенном количестве электричества.

Интересная картина получается при подключении конденсатора к источнику переменного электрического напряжения. Поскольку у источника переменного напряжения постоянно меняются полярность и мгновенное значение напряжения (в домашней электросети по закону, близкому к синусоидальному). Конденсатор будет непрерывно заряжаться и разряжаться, через него будет непрерывно протекать переменный ток. Но этот ток не будет совпадать по фазе с напряжением источника переменного напряжения, а будет опережать его на 90°, т.е. на четверть периода.

Это приведет к тому, что суммарно половину периода переменного напряжения конденсатор потребляет энергию из сети, а половину периода отдает, при этом суммарная потребляемая активная электрическая мощность равна нулю. Но, поскольку через конденсатор течет значительный ток, который может быть измерен амперметром, принято говорить, что конденсатор – потребитель реактивной электрической мощности.

Вычисляется реактивная мощность как произведение тока на напряжение, но единица измерения уже не ватт, а вольт-ампер реактивный (ВАр). Так, через подключенный к сети 220 В частотой 50 Гц электрический конденсатор емкостью 4 мкФ течет ток порядка 0,3 А. Это означает, что конденсатор потребляет 0,3 х 220 = 66 (ВАр) реактивной мощности – сравнимо с мощностью средней лампы накаливания, но конденсатор, в отличие от лампы, при этом не светится и не нагревается.

Реактивная индуктивная мощность

Если в конденсаторе ток опережает напряжение, то существуют ли потребители, где ток отстает от напряжения? Да, и такие потребители, в отличие от емкостных потребителей, называются индуктивными, оставаясь при этом потребителями реактивной энергии. Типичная индуктивная электрическая нагрузка – катушка с определенным количеством витков хорошо проводящего провода, намотанного на замкнутый сердечник из специального магнитного материала.

Читать еще:  Двигатель 2ст дизель технические характеристики

На практике хорошим приближением чисто индуктивной нагрузки является работающий без нагрузки трансформатор (или стабилизатор напряжения с автотрансформатором). Хорошо сконструированный трансформатор на холостом ходу потребляет очень мало активной мощности, потребляя мощность в основном реактивную.

Реальные потребители электрической энергии и полная электрическая мощность

Из рассмотрения особенностей емкостной и индуктивной нагрузки возникает интересный вопрос – что произойдет, если емкостную и индуктивную нагрузку включить одновременно и параллельно. Ввиду их противоположной реакции на приложенное напряжение, эти две реакции начнут компенсировать друг друга. Суммарная нагрузка окажется только емкостной или индуктивной, и в некотором идеальном случае удастся добиться полной компенсации. Выглядеть это будет парадоксально – подключенные амперметры зафиксируют значительные (и равные!) токи через конденсатор и катушку индуктивности, и полное отсутствие тока в объединяющих их общей цепи. Описанная картина несколько нарушается лишь тем, что не существует идеальных конденсаторов и катушек индуктивности, но подобная идеализация помогает понять суть происходящих процессов.

Вернемся к реальным потребителям электрической энергии. В быту мы пользуемся в основном потребителями чисто активной мощности (примеры приведены выше), и смешанной активно-индуктивной. Это электродрели, перфораторы, электродвигатели холодильников, стиральных машин и прочей бытовой техники. Также к ним относятся электрические трансформаторы источников питания бытовой радиоэлектронной аппаратуры и стабилизаторов напряжения. В случае подобной смешанной нагрузки, помимо активной (полезной) мощности, нагрузка потребляет еще и реактивную мощность, в итоге полная мощность отказывается больше активной мощности. Полная мощность измеряется в вольт-амперах (ВА), и всегда представляет собой произведение тока в нагрузке на напряжение на нагрузке.

Таинственный «косинус фи»

Отношение активной мощности к полной называется в электротехнике «косинусом фи». Обозначается cos φ. Это отношение называется также и коэффициентом мощности. Нетрудно видеть, что для случая чисто активной нагрузки, где полная мощность совпадает с активной, cos φ = 1. Для случаев чисто емкостной или индуктивной нагрузок, где нулю равна активная мощность, cos φ = 0.

В случае смешанной нагрузки значение коэффициента мощности заключается в пределах от 0 до 1. Для бытовой техники обычно в диапазоне 0,5-0,9. В среднем можно считать его равным 0,7, более точное значение указывается в паспорте электроприбора.

За что платим?

И, наконец, самый интересный вопрос – за какой вид энергии платит потребитель. Исходя из того, что реактивная составляющая суммарной энергии не приносит потребителю никакой пользы, при этом долю периода реактивная энергия потребляется, а долю отдается, платить за реактивную мощность незачем. Но бес, как известно, кроется в деталях. Поскольку смешанная нагрузка увеличивает ток в сети, возникают проблемы на электростанциях, где электроэнергия вырабатывается синхронными генераторами, а именно: индуктивная нагрузка «развозбуждает» генератор, и приведение его в прежнее состояние обходится в затраты уже реальной активной мощности на его «довозбуждение».

Таким образом, заставить потребителя платить за потребляемую реактивную индуктивную мощность вполне справедливо. Это побуждает потребителя компенсировать реактивную составляющую своей нагрузки, а, поскольку эта составляющая в основном индуктивная, компенсация заключается в подключении конденсаторов наперед рассчитанной емкости.

Потребитель находит возможность платить меньше

Если потребителем оплачивается отдельно потребляемая активная и реактивная мощность. Он готов идти на дополнительные затраты и устанавливать на своем предприятии батареи конденсаторов, включаемые строго по графику в зависимости от средней статистики потребления электроэнергии по часам суток.

Существует также возможность установки на предприятии специальных устройств (компенсаторов реактивной мощности), подключающих конденсаторы автоматически в зависимости от величины и характера потребляемой в данный момент мощности. Эти компенсаторы позволяют поднять значение коэффициента мощности с 0,6 до 0,97, т.е. практически до единицы.

Принято также, что если соотношение потребленной реактивной энергии и общей не превышает 0,15, то корпоративный потребитель от оплаты за реактивную энергию освобождается.

Что же касается индивидуальных потребителей, то, ввиду сравнительно невысокой потребляемой ими мощности, разделять счета на оплату потребляемой электроэнергии на активную и реактивную не принято. Бытовые однофазные счетчики электрической энергии учитывают лишь активную мощность электрической нагрузки, за нее и выставляется счет на оплату. Т.е. в настоящее время даже не существует технической возможности выставить индивидуальному потребителю счет за потребленную реактивную мощность.

Особых стимулов компенсировать индуктивную составляющую нагрузки у потребителя нет, да это и сложно осуществить технически. Постоянно подключенные конденсаторы при отключении индуктивной нагрузки будут бесполезно нагружать подводящую электропроводку. За электросчетчиком (перед счетчиком тоже, но за то потребитель не платит), что вызовет потребление активной мощности с соответствующим увеличением счета на оплату, а автоматические компенсаторы дороги и вряд ли оправдают затраты на их приобретение.

Другое дело, что производитель иногда устанавливает компенсационные конденсаторы на входе потребителей с индуктивной составляющей нагрузки. Эти конденсаторы, при правильном их подборе, несколько снизят потери энергии в подводящих проводах, при этом несколько повысив напряжение на подключенном электроприборе за счет уменьшения падения напряжения на подводящих проводах.

Но, что самое главное, компенсация реактивной энергии у каждого потребителя, от квартиры до огромного предприятия, снизит токи во всех линиях электропитания, от электростанции до квартирного щитка. За счет реактивной составляющей полного тока, что уменьшит потери энергии в линиях и повысит коэффициент полезного действия электросистем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector