Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое тепловой ток двигателя

Как выбрать тепловое реле для двигателя по мощности и току: разъясняем досконально

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Состоит прибор из корпуса (1), пластины биметаллической (2), толкателя (3), пластины исполнительной (4), пружины (5), регулировочного винта (6), пластины компенсатора (7), контактов (8), эксцентрика (9), кнопки возврата (10)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Приспособление ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Читать еще:  Автоматический запуск двигателя в мороз

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток уставки обычно указан на щитке.

Теплопоступление от электродвигателей.

Теплопоступление от электродвигателей QЭл и механического оборудования определяется из уравнения

Qэл = N yКиспКзагрКодн (1-N + кт N). (III.7)

Где Ny — установочная мощность электродвигателей, Вт; Кисп — коэффициент использования установочной мощности (0,7—0,9); Кзагр — коэффициент загрузки (0,5—0,8); Кодн — коэффициент одновременности работы электродвигателей (0,5—1); N — КПД электродвигателя, определяемый по каталогу (0,75—0,90); кт — коэффициент перехода механической энергии в тепловую (0,1—1) с учетом, что часть теплоты может быть отдана охлаждающей эмульсии, перекачиваемой воде или воздуху и унесена за пределы данного помещения.

Произведение N yКиспКзагрКодн в выражении (III.7) соответствует фактически расходуемой электроэнергии, которая почти полностью превращается в тепло. Величина (1— N) определяет долю тепла, выделяемого электродвигателем и электрическим оборудованием, а (кт N) —долю теплоты, выделяемой механическим оборудованием, приводимым в действие электродвигателем.

Теплопоступление от нагретых поверхностей технологического оборудования может быть принято по данным технологов или рассчитано по формулам. Если известна температура tПов поверхности, то теплопоступление Qпов, Вт, с поверхности F, м2, составляет

Qпов = (ак + ал ) (tпов — tв) Fпов. (II1.8)

Где ак и ал — коэффициенты теплопередачи соответственно конвекцией и лучеиспусканием.

Если известна конструкция ограждения оборудования и параметры среды в оборудовании, то

Qoгp. o6 = когр. об (tср —tв) Fогр. об. (III.9)

В этом выражении значение коэффициента теплопередачи Qогр. об принимается (или вычисляется) по формулам теплопередачи.

Оглавление

1 Расчет тепловых потерь

Дата введения15.06.1989
Добавлен в базу01.11.2014
Актуализация01.02.2020

Этот документ находится в:

  • Раздел Экология
    • Раздел 27 ЭНЕРГЕТИКА И ТЕПЛОТЕХНИКА
      • Раздел 27.010 Энергетика и теплотехника в целом
  • Раздел Строительство
    • Раздел Нормативные документы
      • Раздел Отраслевые и ведомственные нормативно-методические документы
        • Раздел Проектирование и строительство объектов других министерств
Читать еще:  Двигатель 402 карбюратор тюнинг

Организации:

09.06.1989УтвержденГИПРОНИИСТРОЙДОРМАШ
РазработанГипрониистройдормаш
  • ГОСТ 183-74Машины электрические вращающиеся. Общие технические условия

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

  • Сканы страниц документа
  • Текст документа

Государственный проектный и научно-исследовательский институт строительного, дорожного н коммунального машиностроения

МЕТОДИКА определения тепловыделений от электротехнического оборудования

Главный ^менердщститута . Д .Тютюннико в

РУКОВОДЯЩИЙ НОШАТИЗНЫЙ ДОКУМЕНТ

Методика определения тепло- РД 22.18-355-89

вьделений от электротехни-

ческого оборудования Р1М 22.I8-3I7-8I

Дата введения /566.2£,

Настоящая методика устанавливает порядок определения тепловых потерь от электрооборудования,так как от величины расчетных потерь зависят выбор системы вентиляции,объем подаваемого воздуха,а также производительность вентустановок.

Тепловые потери электрооборудования,не указанные ниже, определяют в соответствии с заводской документацией или техническими условиями на это электрооборудование.

РД 22.18-355-89 С.10

1. Тепловые потери электрического оборудования. И.И.Легерман «Инструктивные указания по проектированию электротехнических промыпленных установок» № 5 — 1978г.

2. Потери мощности и электроэнергии в силовых масляных двухобмоточных трансформаторах общего назначения в сетях 6-10 кВ машиностроительных заводов.

РД 22.18-355-89 С.2

Расчет тепловых потерь

РД 22.18-355-89 С.З

I. РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ

1*1. Тепловые потери электрических машин (кВт),если они указаны в формулярах или габаритных чертежах машин определяют по формуле

где Рн — номинальная мощность машины, кВт;

Кз — коэффициент загрузки (фактический или перспективный)

Для ряда машин обычно учитывают одновременность их

Для ориентировочной оценки тепловых потерь,величину КПД можно принимать равной 0,8 , а величину коэффициента загрузки Кз = 0,85, тогда (I) примет вед (1а)

Определение потерь по КПД не всегда дает правильные результаты,так как его обычно исчисляют исходя из определенной расчетной рабочей температуры нагрева обмоток.

Фактически эта температура,ограничиваемая классом изоляции обмоток (ГОСТ 183-74),может быть выше,что увеличивает потери .Поэтому при больших машинах дополнительно к КПД следует у заводов-изгото вителей машин запрашивать истинные тепловые потери.

РД 22.18-355-89 С.4

В том случае, когда КПД машины не учитывает потерь на её возбуждение, то их определяют отдельно,

Читать еще:  Двигатель гамма какое масло лить

А Рв = 1,24 • l 2 b • ■Jb • 1СГ 3 (2)

где 1,24 — коэффициент увеличения сопротивления при нагреве обмоток (при перепаде температур между нагретым и холодным состоянием обмотки 75-15 — 60°С)’

/в — ток возбуждения , А ;

^>в — сопротивление обмоток возбуждения в холодном состоянии, Огл

Для других значений температурного перепада сопротивление горячей обмотки определяется по (3), Ом.

Проблемы из-за неправильного расчета пускового тока

Наиболее частые проблемы, возникающие по причине неправильного расчета пускового тока и в соответствии с этим неправильного выбора оборудования:

Срабатывания автоматов защиты и иных защитных устройств

Срабатывания автоматов защиты и иных защитных устройств при включении системы обогрева из «холодного» состояния. Фактически автоматы защиты нагревательных секций выключатся в первые 10-100 секунд после подачи на них питания. Автомат отключается по перегрузке, срабатывает его тепловой расцепитель. Автомат может работать некоторое время в режиме перегрузки, но ввиду затяжного характера процесса снижения СТ, его запаса не хватает. Для устранения этой проблемы приходится выбирать автомат на большее значение номинального тока.

Данная проблема может быть не выявлена на этапе тестирования или запуска системы, так как максимальный пусковой ток увеличивается при понижении температуры окружающей среды. Если систему тестировали до наступления минимальных температур ошибка возникнет только при включении системы в холодное время года (например, в мороз).

Перегрев силового кабеля

Перегрев силового кабеля возникает по причине неправильного подбора его сечения. Из-за большой длительности пускового процесса греющего кабеля высокое значение СТ нагревает жилы силового кабеля. При этом кабель может расплавиться, возникнуть короткое замыкание и даже пожар на объекте обогрева.

При расчетах системы обогрева необходимо помнить, что в первую очередь максимальный стартовый ток зависит от длины секции кабеля.

Превышение допустимой длины приводит не только к увеличению СТ, но и к преждевременному износу системы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector