Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое турбовентиляторный двигатель

Как сделать самолеты еще менее прожорливыми?

Новое, более «зеленое» поколение лайнеров должно потреблять меньше топлива, производить меньше вредных выбросов и меньше шума — с этим согласны все. Однако достичь всех этих целей одновременно крайне непросто.

Стандартом современной гражданской авиации являются турбовентиляторные двигатели. По сути это разновидность двухконтурного турбореактивного двигателя, общий принцип работы которого достаточно прост. При полете самолета набегающий воздух всасывается внутрь двигателя компрессором низкого давления (имеющего привод от вала турбины). Далее часть воздуха направляется внутрь двигателя и участвует как окислитель в сжигании топлива, а другая часть идет в обход камеры сгорания и вырывается назад через сопло, создавая реактивную тягу.

Реактивную тягу также создает струя раскаленных газов, выходящая из сопла двигателя. Отношение объемов воздуха, прокачиваемых через внешний контур и через камеру сгорания, называется «степенью двухконтурности». Двигатели, у которых степень двухконтурности высока и составляет от 2 до 10, называют турбовентиляторными, а имеющее сравнительно большой диаметр первое колесо компрессора низкого давления — вентилятором.

Преимущества турбовентиляторного двигателя также хорошо известны. Во-первых, если б? льшая часть реактивной тяги создается продуваемым воздухом, а не реактивными газами, повышается топливная эффективность, а значит, экономичность и экологичность всей силовой установки. Во-вторых, на выходе из сопла (или сопл) холодный воздух смешивается с горячими газами, снижая общее давление смеси. Это делает двигатель менее шумным.

Но совершенству нет предела, и как только цены на нефть, а значит, и на авиационный керосин начинают расти, авиаперевозчики и авиаконструкторы сразу задумываются о том, как бы сделать самолеты еще менее прожорливыми.

Устройство

А теперь самое время перейти к турбовентиляторному реактивному двигателю, который как раз и является одним из видов ТРДД со степенью двухконтурности больше 2-х. ТВРД, как двухконтурный двигатель, состоит из первого контура – обычного ТРД, и второго. Первый контур включает в себя вентилятор, компрессор высокого давления, камеру сгорания, турбину высокого давления, турбину низкого давления и сопло. Второй контур представляет собой кольцевой канал с неподвижными лопатками внутри и соплом.

Компрессор высокого давления (КВД), как правило, осевой и состоит из нескольких ступеней, каждую из которых формируют подвижные и неподвижные лопатки, закрепленные на валу. Чем больше ступеней, тем выше степень сжатия воздуха. Подвижные лопатки расположены впереди, они засасывают и сжимают воздушный поток, который потом попадает на неподвижные лопасти, задающие ему осевое направление.

Вентилятор – это своего рода тот же компрессор, его даже порой называют компрессором низкого давления и считают одной из ступеней КВД. Обычно он одноступенчатый, чего вполне достаточно для предварительно сжатия воздуха, но в некоторых случаях встречаются и двух- и трехступенчатые вентиляторы.

Камера сгорания может быть кольцевой или трубчатой. Ее поверхность имеет отверстия для лучшего вентилирования и охлаждения. В самой камере установлены форсунки для подачи топлива.

Турбина высокого давления – это основа мотора. Собственно, это тот же компрессор, только с обратным принципом работы: в случае с турбиной не она воздействует на газовый поток, а поток воздействует на нее, отдавая часть своей энергии. Ее конструкция состоит из неподвижных лопаток, выпрямляющих поток расширенных газов, и подвижных лопаток, которые и создают крутящий момент. Как и компрессор, она может иметь несколько ступеней.

Читать еще:  Вибрация холодный запуск двигателя

Турбина низкого давления – это свободная турбина, вращающая вентилятор. Она тоже вращается под воздействием расширенных газов Две турбины не связаны между собой механически и работают независимо одна от другой. Вал второй турбины при этом обычно находится внутри вала первой, но есть конструкции, предусматривающие наличие трех валов.

Что такое турбовентиляторный двигатель

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

Хотел я написать про историю авиационных двигателей, да, видно, руки уже не дойдут. Однако несколько слов сказать всё же стоит.

Несколько лет назад русские патриоты очень обижались, что страны Западной Европы запретили посадки российских самолетов в их аэропортах под предлогом шумности. Понятно, что шумность рассматривалась патриотами как надуманный предлог для того, что уязвить Россию и ущемить ее в конкурентной борьбе. Конечно, Запад люто ненавидит Россию и старается подгадить при любой возможности, но будем объективны.

Американцы еще в 1960 годах начали массовое производство турбо-вентиляторных двигателей с высоким соотношением площадей вентилятор-турбина (high bypass ratio turbofan). Эти двигатели более экономичны и менее шумны. Их можно отличить внешне по очень большому — более 2 метров — входному воздухозаборному отверстию двигателя, в котором виден огромный вентилятор.

Судьба авиационного двигателестроения совершила интересный зигзаг. Первые самолеты приводились в движение воздушным винтом-пропеллером, но при ограниченных скоростях вращения, которые обеспечивали поршневые двигатели, нужно было делать лопасти пропеллеров очень длинными, в результате чего скорости движения их концов приближались к скорости звука, что делало пропеллер неэффективным. Кроме того, невозможен был сверхзвуковой полет на пропеллерах.

Поэтому произошел переход на турбо-реактивные двигатели, которым пропеллер был не нужен. Потом решили помочь реактивному двигателю присоединенным к турбине воздушным винтом традиционной для поршневых двигателей конфигурации, который по указанным выше причинам был неэффективен.

И вот кому-то пришла в голову гениальная мысль: турбина вращается очень быстро; надо приделать к ней винт с короткими, чтобы уменьшить линейную скорость концов, но многочисленными лопастями и заключить всю эту конструкцию в трубу. Так был создан турбо-вентиляторный двигатель, переставший быть реактивным и вернувшийся назад к пропеллерному принципу — воздушный винт гонит мощную струю воздуха назад, — но в гораздо более эффективном и элегантном исполнении.

А что же отечественный авиапром? Заточенный на военные двигатели, он еще 2-3 десятилетия после появления турбо-вентиляторов продолжал клепать турбо-реактивные двигатели разработки 1950-х годов. Конечно, это были шумные прожорливые вонючие монстры, и Европу можно понять, когда она, в конце концов, не вытерпела.

А на картинке — новое поколение турбо-вентилятора с редуктором, понижающим обороты вентилятора до более оптимальных значений.

1959 Декабрь—Прошёл государственные испытания первый советский двухконтурный ТРД Д-20П (применялся на пассажирском самолёте Ту-124). Отсюда: http://www.airshow.ru/photos/index_r.htm

Так что извините, написанное Вами не соответствует действительности. Все массовые советские пассажирские самолёты летали с двухконтурными двигателями.
По комфорту лучшее, на чём лично я летал — Ил-86. Могу сравнивать с B747, B767, B737, MD10. Конечно только эконом-класс.
А Вы летаете бизнес-классом?

Я же объяснил, что турбо-вентилятор не является реакти

Я же объяснил, что турбо-вентилятор не является реактивным двигателем. А турбо-реактивный двигатель, сколько бы контуров он ни имел, не является турбо-вентиляторным.

Советские самолеты еще долго после падение советской власти летали на не подходящих для гражданской авиации двигателях. Я не уверен, производились ли вообще в СССР или России широкопрофильные турбо-вентиляторы — скорее всего, нет, поскольку для современных магистральных российских пассажирских самолетов двигатели импортируются.

Читать еще:  Японские двигатели дизель какой лучше

неправильно

вентилятор — это и есть второй контур.

турбовентиляторный это тот же турбореактивный двухконтурный (ТРДД) — фокус в степени двухконтурности.

и ещё вы упустили одну разновидность трд — винтовентиляторную.

вы правы в одном:

в том, что приоритет в развитии двигателестроения (да и вообще — техники) в советские времена делался на военные двигатели. а там экономичность и низкий уровень шума, да и ресурс, чего греха таить, не самые главные параметры.

причин отставания отечественного двигателестроения несколько и все они довольно глубокие. вряд ли мы здесь достаточно компетентны, чтобы всерьёз обсуждать эту тему.

  • » onclick=»window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;» rel=»nofollow»> Печать
  • E-mail

Дата Категория: Транспорт

Вращающийся воздушный винт тянет самолет вперед. Но реактивный двигатель с большой скоростью выбрасывает горячие отработавшие газы назад и тем самым создает реактивную силу тяги, направленную вперед.

Типы реактивных двигателей

Существует четыре типа реактивных, или газотурбинных двигателей:

Турбореактивные;

Турбовентиляторные — такие, как используемые на пассажирских лайнерах Боинг-747;

Турбовинтовые, где используют воздушные винты, приводимые в действие турбинами;

и Турбовальные, которые ставят на вертолеты.

Турбовентиляторный двигатель состоит из трех основных частей: компрессора, камеры сгорания и турбины, дающей энергию. Сначала воздух поступает в двигатель и сжимается при помощи вентилятора. Затем, в камере сгорания, сжатый воздух смешивается с горючим и сгорает, образуя газ при высокой температуре и высоком давлении. Этот газ проходит через турбину, заставляя ее вращаться с огромной скоростью, и выбрасывается назад, создавая таким образом реактивную силу тяги, направленную вперед.

Устройство турбовентиляторного двигателя

Попав в турбинный двигатель, воздух проходит несколько ступеней сжатия. Особенно сильно вырастают давление и объем газа после прохождения камеры сгорания. Сила тяги, создаваемая выхлопными газами, позволяет реактивным самолетам двигаться на высотах и скоростях, намного превосходящих те, что доступны винтокрылым машинам с поршневыми двигателями.

Попав в турбинный двигатель, воздух проходит несколько ступеней сжатия. Особенно сильно вырастают давление и объем газа после прохождения камеры сгорания. Сила тяги, создаваемая выхлопными газами, позволяет реактивным самолетам двигаться на высотах и скоростях, намного превосходящих те, что доступны винтокрылым машинам с поршневыми двигателями.

Турбореактивный двигатель

В турбореактивном двигателе воздух забирается спереди, сжимается и сгорает вместе с топливом. Образующиеся в результате сгорания выхлопные газы создают реактивную силу тяги.

Турбовинтовой двигатель

Турбовинтовые двигатели соединяют реактивную тягу выхлопных газов с передней тягой, создаваемой при вращении воздушного винта.

4/ Новые технологии и материалы

Разработка современного турбореактивного двигателя – более длительный процесс, чем разработка самого самолета. ПД-14 разрабатывался на основе проверенных временем конструкторских решений с применением современных технологий. При этом ставилось условие использовать только отечественные материалы. Конструкторами было разработано и внедрено 16 ключевых технологий, например, лопатки турбины из легчайшего интерметаллида титана или продвинутая система охлаждения, позволяющая турбине работать при температуре до 2000 °К.

При создании двигателя применяются новые российские сплавы титана и никеля. Конструкция мотогондолы на 65% состоит из отечественных полимерных композитов, благодаря чему достигается необходимый уровень шумоизоляции и снижается масса двигателя. Всего в двигателе задействовано около 20 новых российских материалов, при этом все они прошли сертификацию по международным нормам.

Читать еще:  Бмв 316 двигатель схема

Внедренные инновации позволили снизить расход топлива, сделав ПД-14 более экологичным и экономичным. Предполагается, что эксплуатационные расходы ПД-14 будут ниже на 14-17%, чем у существующих аналогичных двигателей, а стоимость жизненного цикла ниже на 15-20%.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними — и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

В заключение

Теперь читатель располагает общими представлениями об устройстве, принципе работы, механизме действия, способах эксплуатации турбин. Здесь также были рассмотрены конкретные виды турбин, отличающиеся видом рабочего тела, и исторические сведенья, показывающие общий ход развития данных механизмов. Подведя итоги, можно сказать, что турбины – это устройства, преобразовывающие энергию. Попытки их создания были совершены еще задолго до нашей эры. В настоящее время они широко используются человеком в различных отраслях промышленности, что значительно упрощает процесс работы, усиливает производительность и позволяет совершать механические действия, ранее недоступные человечеству.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector