Что такое тяга реактивного двигателя
Реактивная тяга
Реактивная тяга — сила, возникающая в результате взаимодействия двигательной установки с истекающей из сопла струёй расширяющейся жидкости или газа, обладающих кинетической энергией [1] .
В основу возникновения реактивной тяги положен закон сохранения импульса. Реактивная тяга обычно рассматривается как сила реакции отделяющихся частиц. Точкой приложения её считают центр истечения — центр среза сопла двигателя, а направление — противоположное вектору скорости истечения продуктов сгорания (или рабочего тела, в случае не химического двигателя). То есть, реактивная тяга:
- приложена непосредственно к корпусу реактивного двигателя;
- обеспечивает передвижение реактивного двигателя и связанного с ним объекта в сторону, противоположную направлению реактивной струи [2] .
Как появились реактивные тяги?
Автомобильные конструкторы еще до второй мировой войны стали замечать, что самая обычная рессорная подвеска, которая играла роль и пружины, и реактивной тяги, стала плохо справляться со своей функцией. С появлением более мощных двигателей, автомобили стали склонны к раскачиванию на высоких скоростях. Это связано с тем, что при движении автомобиля на его колеса действуют несколько сил, направленных в разные стороны. Если при движении на большой скорости такое воздействие почти незаметно, то при больших скоростях управление значительно ухудшается.
Чтобы исключить возможность появления раскачивания, конструкторы начали применять специальные рычаги, которые стали основным элементом современной независимой подвески. Позднее, появились реактивные тяги, которые успешно справляются со своими задачами.
Особенности эксплуатации реактивных тяг
Характерные особенности эксплуатации реактивных тяг – прямое следствие их конструкции и назначения. Эти элементы испытывают постоянные нагрузки, причем, в разных направлениях. Основное направление одно – поперечное или продольное, но, будучи частью общей конструкции подвески, реактивные тяги работают зачастую и на скручивание под воздействием сил, действующих в иных направлениях.
Материалом для них служат упругие сорта стали, способные выдерживать высокую нагрузку в течение долгого времени, сопоставимого, а порой и превышающего срок службы автомобиля. Однако проушины, часть конструкции тяг, не являются естественным продолжением стержней (не делаются вместе с ними единой отливкой), и прикрепляются к стержнем посредством сварки. Сварные швы имеют ограниченный срок службы и со временем (либо под воздействием запредельных нагрузок) разрушаются. За их состоянием необходимо регулярно следить и менять тяги в случае появления трещин.
Самый слабый элемент тяг – сайлентблоки. Обойтись без них нельзя по вышеописанным причинам, поэтому за их состоянием также следует внимательно следить. Под воздействием повторяющихся нагрузок они постепенно покрываются трещинами, а затем резиновая часть рвется, и тяга начинает свободно двигаться относительно основания, к которому прикреплена. Рекомендуется менять тяги на этапе появления трещин, не дожидаясь разрыва резинок.
Тяги расположены под днищем автомобиля, там, где металл наиболее уязвим для погодных условий, поэтому коррозия неизбежно покрывает их даже при наличии защитного покрытия – краски. Если тяги не трубчатые, это не опасно; следить нужно за состоянием тяг, сваренных из труб.
§ 5.4. Реактивное движение. Уравнение Мещерского. Реактивная сила
Какое движение называется реактивным?
Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.
Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 5.4). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.
Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.
Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.
При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.
Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.
Уравнение Мещерского
Выведем уравнение движения ракеты и найдем выражение для реактивной силы. Будем считать, что скорость вытекающих из ракеты газов относительно ракеты постоянна и равна . Внешние силы на ракету не действуют: она находится в космическом пространстве вдали от звезд и планет.
Пусть в некоторый момент времени скорость ракеты относительно инерциальной системы, связанной со звездами, равна (рис. 5.5, а), а масса ракеты равна М. Через малый интервал времени Δt масса ракеты станет равной
где μ — расход топлива(1).
За этот лее промежуток времени скорость ракеты изменится на Δ и станет равной
1 =
+ Δ
. Скорость истечения газов относительно выбранной инерциальной системы отсчета равна
+
(рис. 5.5,б), так как до начала сгорания топливо имело ту же скорость, что и ракета.
Запишем закон сохранения импульса для системы ракета — газ:
Раскрыв скобки, получим:
Слагаемым μΔtΔ можно пренебречь по сравнению с остальными, так как оно содержит произведение двух малых величин (это величина, как говорят, второго порядка малости). После приведения подобных членов будем иметь:
Это одно из уравнений Мещерского(2) для движения тела переменной массы, полученное им в 1897 г.
Если ввести обозначение р = -μ
, то уравнение (5.4.1) совпадет по форме записи со вторым законом Ньютона. Однако масса тела М здесь не постоянна, а убывает со временем из-за потери вещества.
Величина р = -μ
носит название реактивной силы. Она появляется вследствие истечения газов из ракеты, приложена к ракете и направлена противоположно скорости газов относительно ракеты. Реактивная сила определяется лишь скоростью истечения газов относительно ракеты и расходом топлива. Существенно, что она не зависит от деталей устройства двигателя. Важно лишь, чтобы двигатель обеспечивал истечение газов из ракеты со скоростью
при расходе топлива μ. Реактивная сила космических ракет достигает 1000 кН.
Если на ракету действуют внешние силы, то ее движение определяется реактивной силой и суммой внешних сил. В этом случае уравнение (5.4.1) запишется так:
Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.
Вопросы для самопроверки
- Реактивное движение совершает кальмар (рис. 5.6). Как это ему удается?
Рис. 5.6
(1) Расходом топлива называется отношение массы сгоревшего топлива ко времени его сгорания.
(2) Мещерский И. В. (1859—1935) — профессор Петербургского политехнического института. Его труды по механике тел переменной массы стали теоретической основой ракетной техники.
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.
Получите невероятные возможности
Конспект урока «Реактивное движение»
Все вы много раз слышали о реактивном двигателе или реактивных самолетах.
Реактивное движение — это движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно него.
В частности, реактивная тяга — это сила, возникающая в результате истечения газов из сопла летательного аппарата с определенной скоростью.
Элементарный пример реактивного движения видел каждый: если надуть воздушный шарик и, не завязав его, отпустить, шарик полетит, и будет летать до тех пор, пока из него не выйдет весь воздух.
Реактивные двигатели, в первую очередь, необходимы для освоения космического пространства. Ведь, находясь в открытом космосе, корабль не имеет возможности оттолкнуться от какой-либо опоры, поскольку ее, попросту, нет. Единственной силой, которая могла бы сообщить кораблю ускорение, является реактивная тяга.
Несмотря на то, что в пределах земной атмосферы нет необходимости применять реактивные двигатели, большинство современных самолетов летают именно на реактивной тяге. Это обусловлено тем, что реактивная тяга предоставляет достаточно высокие скорости, по сравнению с теми, которые достижимы винтовыми самолетами.
Реактивные двигатели делятся на два основных типа: ракетные и воздушно-реактивные.
Для работы ракетного двигателя необходимо топливо и окислитель, который способствует горению. В двигателях на твердом топливе (в качестве которого часто используется порох), горючее и окислитель находятся непосредственно в двигателе. В реактивных двигателях на жидком топливе, таком как бензин, например, топливо и окислитель хранятся в отдельных баках, и с помощью насосов подаются в камеру сгорания.
Температура в камере сгорания составляет порядка 3 000 о С, в результате чего, давление возрастает до 50 атм. В камере сгорания при сгорании топлива образуются газы, которые из-за высокой температуры создают высокое давление на стенки камеры. В результате этого, газы вырываются из сопла ракеты, тем самым двигая ее вперед.
Выполняется закон сохранения импульса: суммарный импульс системы должен оставаться равным нулю. Определенная масса газов вырывается из сопла в одну сторону, поэтому, ракета должна начать двигаться в другую сторону. Для увеличения эффекта применяют сужение сопла, чтобы увеличить скорость истечения газов. Ведь при этом, через меньшее поперечное сечение должно будет пройти то же количество газов за определенное время. Следовательно, скорость истечения газов должна увеличиться.
Заметим, что даже при постоянной скорости истечения газов, скорость ракеты будет увеличиваться, поскольку будет уменьшаться ее масса в результате сгорания топлива. Исходя из этого, мы можем вывести формулу, по которой рассчитывается реактивная тяга:
Обратите внимание, что перед скоростью истечения газов стоит знак «минус», поскольку, эта скорость направлена в противоположную сторону, чем скорость движения ракеты.
Эта же формула выводится из закона сохранения импульса для системы ракета — продукты сгорания:
В правой части мы видим отношение изменения массы к промежутку времени — эта величина называется массовым расходом топлива.
Воздушно-реактивные двигатели немногим отличаются от ракетных. Основное их отличие в том, что в качестве окислителя используется кислород, содержащийся в воздухе, который попадает внутрь двигателя.
Пример решения задачи.
Задача. Реактивный самолет набирает скорость от 800 км/ч до 2000 км/ч. За это время самолет потерял 1 т топлива. Масса самолета без топлива равна 16 т. Какова скорость истечения газов?
Нам ничего не сказано о других силах, поэтому, внешними силами можно пренебречь.
Начало полетов
Первый коммерческий рейс состоялся 2 мая 1952 года. Comet вылетел из Лондона и направился в Йоханнесбург (ЮАР). Покрыть такое расстояние самолет De Havilland без дозаправки не мог: дальность полета составляла примерно 2400 километров — маловато по современным меркам. Однако благодаря высокой скорости время путешествия все равно сильно сокращалось даже с учетом необходимости частых приземлений для дозаправки: Comet развивал под 800 км/ч, в то время как турбовинтовые самолеты выдавали в районе 500 км/ч.
У самолета была масса проблем: ненадежная гидравлика (она впервые применялась на гражданских самолетах), перегрев электрических систем, запотевание остекления, а усилия на штурвале были всегда одинаковы. Бывший пилот Comet вспоминал, что это делало управление самолетом весьма опасным.
Ровно через год после выхода в коммерческую эксплуатацию происходит катастрофа: De Havilland Comet развалился в воздухе через несколько минут после взлета в небе над Калькуттой (Индия). Погода при вылете была скверной — сильный дождь с грозой. Тем не менее вылет при таких условиях допускался. Comet попал в эпицентр бури: предполагается, что самолет не выдержал перегрузок из-за порывистых потоков воздуха. В катастрофе никто не выжил, погибли 37 пассажиров и 6 членов экипажа. Основной причиной происшествия стали погодные условия. Комиссия по расследованию катастрофы рекомендовала De Havilland глубже изучить причину аварии и определить, требуются ли самолету доработки.
Лечение никотиновой зависимости в клинике «Здравница» в Москве
Центр лечения и реабилитации “Здравница” осуществляет профессиональную терапию никотиновой зависимости. Мы заслужили доверие резидентов клиники благодаря таким особенностям:
- Высокое качество медицинских услуг;
- Сочетание классических и инновационных методов терапии;
- Применение профессионального оборудования;
- Гарантия анонимности;
- Комплексный подход к лечению;
- Богатый опыт терапии зависимостей;
- Хорошие условия содержания и т.д.