Электрические двигателя используемые как генераторы
Электрогенераторы. Виды и устройство. Применение и как выбрать
Для питания электроприборов в случае отсутствия проложенной линии электропередач или при аварийном отключении напряжения используются электрогенераторы. Они представляют собой технические устройства, которые вырабатывают электричество, потребляя при этом бензин, дизельное топливо или газ.
Что такое электрогенератор и его конструкция
Прибор представляет собой устройство, состоящее из двигателя внутреннего сгорания, который обеспечивает раскручивание якоря небольшого электромотора, сделанного по принципу генератора. В результате постоянного поддержания высоких оборотов создается электрическое напряжение, снимаемое на специальные клеммы и выводимое на внешнюю розетку, используемою для подключения потребителей энергии.
Электрогенераторы могут быть рассчитаны на кратковременное включение и на постоянную работу. По этому критерию они делятся на резервные источники питания и постоянные. Резервные применяются в тех случаях, когда требуется обеспечить питание приборов на короткий период, пока не будет возобновлено электроснабжение сети. Постоянные станции применяются, когда подключение к линии электропередач вообще отсутствует. В этом случае генератор является единственным источником энергии, поэтому работает непрерывно. В зависимости от предназначения оборудование генератора может оснащаться системой воздушного или водяного охлаждения. Воздушные обеспечивают эффективное снижение температуры корпуса устройства на несколько часов, а водяные не допускают перегрев вообще.
Стоит учитывать, что во время работы двигатель создает большой шум, что не всегда приемлемо. По этой причине электрогенераторы могут производиться не только в открытом, но и в шумопоглощающем корпусе, который значительно снижает уровень шума. Устройство с открытым корпусом представляет собой силовую раму, на которую устанавливается ДВС, топливный бак и генератор, при этом они являются открытыми, и все составляющие легко просматриваются. Устройство в шумопоглощающем корпусе имеет специальный защитный кожух, препятствующий распространению звука и вибрации.
Виды электрогенераторов
Электрические генераторы принято разделять на 3 вида в зависимости от используемого топлива для выработки энергии:
- Бензиновые.
- Дизельные.
- Газовые.
Каждая разновидность имеет свои достоинства и недостатки, которые нужно оценить и выбирать подходящую модель уже отталкиваясь от задач, запланированных для генератора.
Бензиновый
Бензиновые станции работают на бензине, за что и получили свое название. Данная категория устройств является самой дешевой при покупке, но очень дорогой в обслуживании. Работающие на бензине генераторы имеют компактный корпус и сравнительно небольшой вес, что делает такие станции максимально мобильными. Зачастую их можно разместить в багажнике легкового автомобиля.
Благодаря дешевизне их преимущественно выбирают для использования в качестве аварийного источника питания. Включение на несколько часов 5-10 раз в год потребует не таких уж и больших затрат на покупку бензина, что на фоне низкой стоимости самой станции является очень выгодным решением. В тех случаях, когда генератор должен работать постоянно, бензиновый вариант совершенно неприемлем. Во-первых, потребуется ежедневно тратить большие суммы на заправку горючего, а во-вторых, моторесурс таких устройств сравнительно короткий.
Дизельный
Дизельные электрогенераторы являются более экономичными в плане потребления топлива, но стоят значительно дороже, а также весят больше. Их моторесурс в 3-4 раза выше, чем у бензиновых аналогов. Дизельная станция может работать непрерывно по 10 и более часов на одной заправке. Такое оборудование редко выбирают для резервного питания частного дома в связи с дороговизной. Практическая экономия топлива при нескольких включениях в год будет незначительной и не покроет затраты на покупку генератора.
Дизельные станции выбирают в тех случаях, когда требуется постоянная выработка электричества. Это могут быть строительные объекты, которые еще не подключены к центральной сети электроснабжения, а также загородные участки и дачи, с такой же проблемой. Стоит отметить, что устройство на дизельном топливе являются более мощными и стойкими к поломкам, но очень шумными.
Газовый
Газовые генераторы еще называют двухтопливными, поскольку они оснащены гибридным двигателем, который может работать как на бензине, так и на баллонном газе. Такие устройства используют в качестве резервного источника энергии. Станция вырабатывает одинаковое количество электричества как на газе, так и на бензине. При питании гибридного двигателя из баллона существенно снижаются затраты на выработку энергии, поскольку стоимость газа намного ниже чем бензина. Стоит отметить, что двухтопливные станции довольно тяжелые и не такие компактные как бензиновые. Их моторесурс тоже не идет ни в какое сравнение с дизельными системами.
Однофазные или трехфазные
Электрогенераторы бывают однофазные и трехфазные. Первые используется для питания бытовых приборов, которые рассчитаны для работы от сети 220В и 50Гц. Они выбираются для установки в частные дома и офисы, где основная задача заключается в обеспечении работы бытовых приборов, таких как телевизор, холодильник, компьютер, водяной насос, фен, зарядка телефона, кондиционер и прочее. Также однофазные генераторы применяют строители при работе на объектах, поскольку именно от такой сети питаются шуруповерты, дрели, перфораторы, компрессоры и прочее оборудование.
Трехфазные электрогенераторы выдают 380 вольт. Для домашнего использования они применяются редко. Их применяют для питания промышленного оборудования. Такая станция позволит продолжить производство даже в том случае, если электроснабжение было остановлено. Особенность трехфазного генератора заключается в том, что на его корпусе имеется две розетки. Первая выдает одну фазу и обеспечивает питание обычных бытовых приборов на 220В, а вторая выводит 380В для промышленного оборудования.
Расчет мощности
Предлагаемые на рынке электрогенераторы имеют большой диапазон мощности от 0,6 и до 10 и выше кВт. Чем производительней станция, тем она дороже, шумнее и менее экономичная. По этим причинам следует подойти к выбору мощности генератора со всей серьезностью. Если мощности будет недостаточно, то при критической нагрузке устройство будет отключаться или просто выйдет из строя. В том случае, когда взять слишком высокий запас производительности, то устройство будет выдавать неоправданно большой поток, который не будет использоваться. В результате будет значительный расход горючего, что существенно увеличит себестоимость выработанной энергии.
Чтобы выбрать электрический генератор требуемых параметров следует провести расчет потребление энергии каждого прибора, который будет работать от него.
К примеру, требуется обеспечение одновременного питания:
- Холодильника на 700 Вт.
- Кондиционера на 1000 Вт.
- Лампы на 23 Вт.
- Компьютера на 50 Вт.
В результате подсчета можно определить, что для одновременного питания всех этих потребителей необходимо, чтобы генератор выдавал 1773 Вт. Кроме этого, нужно учитывать, что отдельные приборы в момент включения не доли секунды потребляют больше энергии, чем непосредственно в период нормальной работы. Данное явление называется коэффициент пускового тока. У холодильника и кондиционера он составляет 3,5. По этой причине в момент включения холодильник резко потребует 2450 Вт, а кондиционер 3500 Вт.
Таким образом, чтобы приборы с высоким коэффициентом пускового тока смогли работать, нужен генератор с мощностью не на 1773, а на 6023 Вт. К этому показателю нужно прибавить запас на 20%, который позволит исключить остановку и сгорание генератора при небольших скачках потребления, в случае включения дополнительной лампочки, утюга или фена. Фактически для таких потребителей нужна станция мощностью 7 кВт и более. Нужно отметить, что в указанном примере предложены приборы с очень высоким коэффициентом пускового тока. Если использовать более скромные потребители, которые не тянут много энергии при включении, то для частного дома, где электричество отключено на несколько часов, нужен только свет, телевизор и компьютер, поэтому даже генератор на 3 кВт справится с легкостью. Холодильник вполне постоит несколько часов выключенным.
Типы запуска
По типу запуска электрогенераторы делятся на 4 группы с:
- Ручным стартером.
- Электростартером.
- Дистанционным запуском.
- Системой ATS.
Генератор с ручным стартером имеет специальный шнурок, при вытягивании которого обеспечивается раскручивание коленвала, что и запускает двигатель. Это самые бюджетные устройства. Чтобы запустить такой генератор может понадобиться несколько раз дернуть за пусковой шнур, что требует некоторых усилий, особенно в холодную погоду. Завести двигатель ручным способом в мороз очень тяжело, особенно у мощного генератора с высокой компрессией мотора.
Генераторы с электростартером запускаются как и любой автомобиль. Достаточно просто вставить ключ и повернуть. Стартер работает от аккумулятора. Также бывают генераторы с дистанционным запуском. Они являются модификацией модели с электростартером, которые дополнительно оснащены пультом дистанционного управления. Пульт напоминает обычную автосигнализацию. Он позволяет провести включение не выходя из дома.
Электрогенераторы с системой ATS работают автоматически. Они оборудованы специальным прибором, который постоянно контролирует наличие в системе электричества. В случае его отключения проводится автоматический запуск станции, и питание электроприборов возобновляется. При включении электроснабжения генератор сам отключается. Это позволяет исключить перерасход топлива в те моменты, когда это уже не нужно.
История и эволюция
Открытие Майклом Фарадеем в 1831 г. законов электромагнитной индукции стало основой для построения электрических машин. Но до появления электрического освещения не было необходимости в коммерческой реализации технологии. В ранних потребителях электроэнергии, например, в телеграфе, как источник питания использовались гальванические батареи. Это был очень дорогой способ производства электричества.
В конце XIX века многие изобретатели искали применение принципу индукции Фарадея для выработки электроэнергии механическим способом. Одними из важных достижений были разработка динамо Вернером фон Сименсом и производство Ипполитом Фонтеном рабочих моделей генераторов Теофила Грамма. Первые устройства использовались вместе с приборами наружного дугового освещения, известными как свечи Яблочкова.
На смену им пришла весьма успешная система Томаса Эдисона на лампах накаливания. В основе его коммерческих электростанций были мощные генераторы, но схема, построенная на производстве постоянного тока, была плохо приспособлена для распределения питания на большие расстояния из-за внушительных теплопотерь.
Никола Тесла разработал усовершенствованный генератор переменного тока, а также практичный асинхронный двигатель. Эти электрические машины наряду с трансформаторами для повышения и понижения напряжения дали основу для создания электрокомпаниями более крупных сетей распределения с использованием мощных электростанций. В больших энергетических системах переменного тока затраты на генерацию и транспортировку были в несколько раз ниже, чем в схеме Эдисона, что стимулировало спрос на электроэнергию и, как следствие, дальнейшую эволюцию электрических машин. Основными датами в истории генераторов можно считать:
1820 г. — Андре-Мари Ампер обнаружил, что электрический ток воздействует на магнитное поле;
- 1832 г. — создание Фарадеем простейшего униполярного генератора;
- 1849 г. — первое применение для питания дуговых ламп маяков;
- 1866 г. — одновременное открытие несколькими изобретателями динамоэлектрического принципа;
- 1891 г. — демонстрация коммерческой машины для производства многофазного напряжения;
- 1895 г. — запущена гидроэлектростанция на Ниагаре.
Классификация генераторов
Классификация преобразователей энергии даёт чёткое понятие – что такое генератор электрического тока. Различают электрические генераторы по следующим признакам:
- автономность;
- фазность;
- режим работы;
- сфера применения.
Автономность
Главное преимущество, которым обладает электрический генератор, – это его полная независимость от централизованных поставщиков энергии. Автономность электротехнического оборудования бывает стационарной и мобильной.
Стационарные
Обычно это генераторные станции, работающие от дизельных двигателей. Станции используют для электроснабжения потребителей в местах, удалённых от централизованных электрических сетей.
Стационарные генераторные станции необходимы для обеспечения током производственных процессов там, где даже кратковременные перебои поставки электроэнергии недопустимы.
Мобильные
Электрогенераторы мобильного типа выполнены в виде компактных аппаратов, которые можно перемещать в пространстве. Передвижные станции используют для электросварки, местного освещения, снабжения током бытовых электроприборов и многое другое.
Оборудование включает в себя двигатель внутреннего сгорания, работающий на бензине или дизельном топливе. Агрегаты имеют различные габариты. Компактный аппарат может транспортировать один человек. Существуют мобильные агрегаты, которые устанавливаются на специальном автомобильном прицепе.
Фазность
По фазовой структуре электрического потока различают однофазные и трёхфазные агрегаты.
Однофазные
Генераторы, производящие однофазный ток, предназначены в основном для питания бытовых приборов. Чаще всего это мобильные аппараты. Однофазными агрегатами хозяева оснащают свои частные домовладения для бытовых нужд (освещения, питания электротехники и др.).
Трёхфазные
Генераторные источники трёхфазного тока используются для питания силового электрооборудования. В некоторых случаях получаемый трёхфазный ток разделяют по фазам. Таким образом, делают развод электропроводки по всему дому для питания бытовых электроприборов.
Важно! Все ветви фазового разделения должны равняться между собой мощности потребления. Если разница нагрузок будет велика, то генератор быстро выйдет из строя.
Режимы работы
В зависимости от того, в каком режиме эксплуатируются агрегаты, их подразделяют на основные и резервные.
Основные
Аппараты предназначены для работы в постоянном режиме. Мощные электрогенераторы с дизельными двигателями относят к промышленным установкам. Устанавливаются там, где требуется получение электроэнергии круглосуточно.
Резервные
Само название агрегатов говорит о применении их в исключительных случаях – при внезапном отключении централизованного электроснабжения. Генераторы могут включаться в работу при срабатывании реле, реагирующего на исчезновение напряжения в электросети централизованного источника. Резервные аппараты рассчитаны на беспрерывную работу в течение нескольких часов.
Сфера применения
Генераторы изготавливают, рассчитанные на две сферы применения: для быта и производства.
Сейчас торговая сеть предлагает широкий выбор бытовых генераторов. Это однофазные установки, предназначенные для аварийного обеспечения электроэнергией частных домостроений. Также компактные агрегаты используют для питания выносного электрооборудования. Для бытовых электроприборов, использующих цифровую элементную базу важно качество тока. Устройство должно выдавать электроэнергию следующих параметров: 220 В, 1 А, 50 Гц.
Мощные бытовые агрегаты используют для электросварочных работ. Их преимуществом является способность производить ток большой силы для получения электрической дуги.
Обратите внимание! Если в инструкции бытового аппарата производитель не оговаривает применение для электросварки, то его нельзя использовать для сварочных работ. В противном случае генератор выйдет из строя.
Производство
Независимыми мощными стационарными генераторами оснащают цеха промышленных предприятий, жилые районы, строительные объекты, больницы и объёмные общественные здания.
- 1 История
- 1.1 Динамо-машина Йедлика
- 1.2 Диск Фарадея
- 1.3 Динамо-машина
- 1.4 Другие электрические генераторы, использующие вращение
- 1.5 МГД генератор
- 2 Классификация
- 3 Электромеханические индукционные генераторы
- 3.1 Классификация электромеханических генераторов
- 4 См. также
- 5 Примечания
- 6 Ссылки
Динамо-машина Йедлика
В 1827 венгр Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершен между 1853 и 1856) и стационарная и вращающаяся части были электромагнитные. Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора. Изобретение Йедлика на десятилетия опередило его время.
Диск Фарадея
В 1831 Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.
Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле. Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска. Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.
Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.
Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.
Динамо-машина
Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Работа динамо-машины основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832.
Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.
Динамо-машина состоит из статора, который создает постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создается одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.
Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока на сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.
Обратимость электрических машин
Русский учёный Э. Х. Ленц ещё 1833 г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.
Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867 гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863 г.
При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866—1867 гг. ряд изобретателей получили патенты на машины с самовозбуждением.
В 1870 г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 г. А. Пачинотти.
В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.
До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой. Заряды вырабатывались, используя один из двух механизмов:
- Электростатическую индукцию
- Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков
По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.
Другие электрические генераторы, использующие вращение
Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока. Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания. Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.
МГД генератор
Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей. Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД. МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.
Основные элементы электростанции
Это неотъемлемая часть электростанции, которая осуществляет преобразование механической мощности в электрическую энергию. Состоит устройство из неподвижных и подвижных модулей, которые вмонтированы в его корпус. Все элементы работают в синхронном режиме, усиливая движение между электрическими и магнитными полями, что рождает электричество.
Ротор, как подвижный модуль, создает вращающееся магнитное поле. Выполняется это несколькими способами:
- индукцией, которая происходит в синхронном бесщеточном генераторе, которые, как правило, имеют достаточно внушительные габариты;
- постоянными магнитами, используемыми в малых генераторах;
- с помощью задающего возбудителя, активизирующего ротор через сборку щеток и токопроводящих контактных колец.
Подвижным ротором вокруг статора вырабатывается вращающееся магнитное поле и вызывается разность напряжений в обмотке. Таким образом производится на выходе переменный ток.
Факторы, влияющие на эффективность работы синхронного генератора:
- металлический или пластиковый корпус. В первом случае устройство отличается большей долговечностью. Пластик же со временем деформируется и может стать причиной повреждения внутренних элементов, создавая таким образом аварийную ситуацию и опасность для пользователя.
- шариковый или игольчатый подшипник: первый более предпочтителен в силу большей его износостойкости.
- в бесщеточном генераторе не используются щетки, благодаря чему отличается производством более чистой энергии на фоне меньшего технического обслуживания.
С помощью этого элемента образуется механическая энергия для работы миниэлектростанции. Его размер напрямую зависит от максимальной мощности электростанции. Кроме того, существует множество факторов, влияющих на функциональность двигателя:
- вид топлива, используемое для работы двигателя. Это могут быть бензин, дизельное топливо, природный газ или пропан. Бытовые электростанции, как правило, работают на бензине, промышленные же электростанции – на дизельном топливе, природном газу, жидком или газообразном пропане. Есть модификации, работающие на комбинированном виде топлива – дизеле и газу.
- верхнее расположение клапанов OHV. Впускные и выпускные клапаны таких двигателей располагаются не на блоке цилиндров, а на их верхушке. Данные модели имеют более высокую стоимость, что обусловлены дополнительными преимуществами. Это компактный дизайн, упрощенная рабочая механика, удобство в использовании, а также долговечность конструкции. Кроме того, их работа отличается низким уровнем шума и меньшим уровнем выбросов.
- чугунная гильза в цилиндре двигателя, используемая в качестве подкладки. Таким способом уменьшается износ двигателя, что увеличивает доремонтный срок службы. Такая чугунная гильза используется в большинстве устройств с верхним расположением клапанов. Как элемент, эта подкладка имеет невысокую стоимость, однако очень важна, особенно в случаях частого использования электростанции.
Система подачи топлива
Топливный резервуар обычно имеет достаточный объем для поддержания стабильной работы электростанции на период от 6 до 8 часов. На малых устройствах бак устанавливается в верхней части корпуса. Для промышленной установки применяется наружный резервуар.
Характеристики системы:
- соединение трубопроводов с двигателем. Таким путем осуществляется подача топлива к работающему модулю и обратно.
- вентиляционная труба для топливного бака необходима для снижения уровня давления при повторном заполнении или сливе резервуара. Крайне важно при этом обеспечить контакт металлических поверхностей сопла наполнителя и топливного бака во избежание искр.
- сливное соединение с дренажной трубой используется для предотвращения протечек жидкости во время слива.
- топливный насос отвечает за перемещение топлива от основного хранилища в точку потребления. Данное устройство имеет электропривод.
- топливный фильтр очищает жидкость от иных примесей, способных привести к коррозии и загрязнению внутренних модулей оборудования.
- инжектор автоматически управляет поступлением необходимого объема жидкости в камеру сгорания.
Регулятор напряжения AVR
Этот модуль осуществляет регулировку выходного напряжения электростанции. Устройство состоит из нескольких компонентов:
- регулятор напряжения контролирует процесс преобразования переменного напряжения в постоянный электроток. Затем происходит его подача на вторичную обмотку статора.
- возбудитель обмотки необходим для генерирования небольшого количества переменного тока. Напрямую связан с вращающимся выпрямителем тока.
- вращающийся выпрямитель тока осуществляет выпрямление переданного с возбудителя обмотки переменного тока с последующей конвертацией его в постоянный. Затем выполняется его подача на ротор, где в дополнение к вращающемуся магнитному полю создается и электромагнитное напряжение.
- ротору отводится роль индукции большого количества переменного напряжения на обмотку статора.
Регулятор напряжения максимально задействован в начальном периоде запуска установки. Как только устройство выходит на полную работоспособность, модуль снижает выработку постоянного тока. В состоянии равновесия регулятор напряжения производит только необходимое количество мощности для поддержания электростанции в рабочем состоянии.
При увеличении нагрузки на электростанцию, регулятор напряжения выходит из состояния равновесия и активизирует свою работу, пока мощность оборудования не выйдет на показанный уровень потребления.
В нашем каталоге Вы можете ознакомиться с примерами дизельных генераторов с АВР >>
Установка выхлопа и охлаждения двигателя электростанции
Включает в себя:
- Систему охлаждения электростанции, используемую для снижения уровня перегрева рабочего устройства. В качестве антифриза используется вода, водород, а также стандартный радиатор и вентилятор. За уровнем охлаждения следует периодически наблюдать, чтобы предотвратить аварийную ситуацию. Система требует постоянной очистки от загрязнений, выполняемую через каждые 600 часов работы. Следует обеспечить приток к устройству свежего воздуха: по действующим нормам в радиусе от электрогенерирующей установки должно быть не меньше метра свободного пространства.
- Систему выхлопа. В процессе сгорания топлива образуется отработанный газ, содержащий высокотоксичные химические соединения. Очень важно создать эффективную систему утилизации выхлопов с использованием вытяжек.
Электростанция в комплекте имеет множество движущихся модулей, эффективность работы которых зависит и от содержания смазочных веществ. Для чего в помпе всегда находится специальное масло, уровень которого следует контролировать каждые 8 часов. Также необходимо строго отслеживать возможные протечки смазывающего вещества.
Запуск электростанции осуществляется с помощью аккумулятора. Эта батарея должна быть всегда заряженной, за что отвечает зарядное устройство. Оно снабжает аккумулятор необходимым количеством «плавающей» энергии, которая и производит подзарядку емкости. Важно следить за уровнем этой энергии: снижение приведет к неполной зарядке аккумулятора, а повышенный уровень выведет его из строя.
Изготавливается зарядное устройство из нержавеющей стали, чтобы увеличить срок службы модуля. Его работа полностью автоматизирована и не требует вмешательства в параметры. Постоянное напряжение на выходе определяется на уровне на 2.33 Вольт на ячейку. Зарядное устройства обладает отдельным постоянным напряжением, которое может привнести сбои в нормальное функционирование электрооборудования.
Модуль снабжен упрощенным интерфейсом, на котором отображены все положения управляемых элементов. Каждый производитель предлагает собственный вариант панели.
Электрическое включение и выключение автоматически запускает электростанцию в рабочее состояние в случае необходимости. И отключает, когда деятельность устройства нецелесообразна.
Механическое устройство прибора отображает на датчиках наиболее важные параметры по давлению масла, температуре охлаждения, напряжению батареи, скорости вращения двигателя и длительности работы. При превышении нормы электростанция автоматически отключается.
Датчики мини электростанции отвечают за измерение выходного тока, напряжения и рабочей частоты. Иные виды контроля: переключатель частоты, фазовый селекторный переключатель и переключатель режимов двигателя.
Основная конструкция служит генераторному оборудованию главной поддержкой и имеет выполненный под заказ корпус. В случаях, когда предполагается перемещение оборудования, рама может быть дополнительно оснащена шасси.
Для наглядности, вы можете посмотреть нашу продукцию из раздела передвижные дизельные генераторы >>
Можно ли использовать электродвигатель в качестве генератора
В случае, когда возникает необходимость использования генератора, для этой цели можно применить электродвигатель переменного тока.
Чтобы преобразовать мотор в генератор необходимо создать искусственное магнитное поле, поскольку в асинхронном агрегате его скорость медленнее скорости вращения статора. Поэтому, необходимо задаться вопросом, как запустить обратный процесс. Магнитное поле статора следует замедлить или сделать так, чтобы оно вращалось в противоположную сторону.
Где устанавливать генератор
Генераторы с ДВС рекомендуется помещать в отдельном, хорошо проветриваемом помещении, так чтобы ни шум, ни запах выхлопных газов не помешали жильцам. В идеальном варианте это может быть отдельная постройка. Существуют также модели генераторов, которые и вовсе можно устанавливать на открытом воздухе. Так, например, модели серии Vanguard V-Twin (Briggs & Stratton) оборудованы защитным всепогодным кожухом, который защищает их от механических повреждений и непогоды, а также позволяет стабильно работать даже при низких температурах. Для такого генератора не понадобится дополнительных строений.
В первую очередь нужно точно определить мощность всех подключаемых приборов. Мощность генератора должна быть примерно на 30 % выше требуемой мощности. Для бытовых нужд стоит выбирать высокооборотные портативные дизельные генераторы. Эти модели компактны, просты в обслуживании, производят меньше шума при работе, а их мощности, как правило, вполне достаточно для обслуживания стандартного комплекта бытовых приборов в загородном доме.
Технический специалист компании «Каширский Двор»