Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрические схемы защиты трехфазных двигателей

Автоматический выключатель с защитой от пропадания фазы

Реле контроля фаз необходимо ставить там, где часто производится переподключение к питающему трехфазному напряжению, а также там, где важна фазировка (правильное чередование фаз).

Например, реле контроля фаз может быть полезно в оборудовании, которое часто переносится с места на место, и в котором критично перепутать фазы. В некоторых устройствах неправильное чередование фаз может привести к неправильному функционированию и поломке. Например, винтовой компрессор, если его включить в неправильном направлении более чем на 5 секунд, может полностью выйти из строя.

Кроме того, при подключении такого оборудования может сложиться ошибочное мнение что его надо ремонтировать, и ремонтный персонал будет некоторое время чесать репу, пока кто-то не подаст нужную мысль: «А может, фазы перепутаны?». А потом ещё кто-то скажет ещё более нужную мысль: «Надо бы поставить реле контроля фаз…»

Первый способ

Первый способ защиты трехфазных асинхронных электродвигателей.

Это самый распространенный способ, проверенный временем. Защита двигателя от отключения одной фазы обеспечивается применением теплового реле ТЗ. Смысл этой защиты состоит в том, что постоянная нагревания теплового реле подбирается таким же образом, что и постоянная нагревания электродвигателя. То есть, проще говоря, реле нагревается так же, как и двигатель. И при превышении температуры выше допустимой реле отключает двигатель. При отключении одной фазы ток через другие фазы резко возрастает, двигатель и тепловое реле начинают быстро нагреваться, что вызывает срабатывание теплового реле. Способ хорош и тем, что обеспечивает и защиту двигателя от перегрузки и пробоя одной фазы на корпус. Но для надежной защиты от пробоя на корпус двигатель обязательно должен быть заземлен или занулен. Недостаток этого способа в том, что его нужно достаточно точно подбирать и настраивать. В идеале его номинальный ток должен быть такой же, как и у двигателя.

Электрические схемы защиты трехфазных двигателей

В магазине: 7 посетитель(ей)

Статистика за сегодня

Просмотров за сегодня: 905
Посетителей за сегодня: 148

Статистика за всё время

Замена антифриза лада ларгус dmservis.ru.

Способы защиты трехфазных асинхронных электродвигателей
Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако, они либо сложны, либо недостаточно чувствительны.
Устройства защиты можно условно разделить на релейные и диодно-транзисторные.
Релейные в отличие от диодно-транзисторных более просты в изготовлении.
Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.

Первый способ

Это самый распространенный способ, проверенный временем. Защита двигателя от отключения одной фазы обеспечивается применением теплового реле ТЗ. Смысл этой защиты состоит в том, что постоянная нагревания теплового реле подбирается таким образом, что и постоянная нагревания электродвигателя. То есть проще говоря, реле нагревается так же, как и двигатель. И при превышении температуры выше допустимой реле отключает двигатель.

При отключении одной фазы, ток через другие фазы резко возрастает, двигатель и тепловое реле начинают быстро нагреваться, что вызывает срабатывание теплового реле.

Способ хорош и тем, что обеспечивает и защиту двигателя от перегрузки и пробоя одной фазы на корпус. Но для надежной защиты от пробоя на корпус, двигатель обязательно должен быть заземлен или занулен.

Недостаток этого способа в том, что его нужно достаточно точно подбирать и настраивать. В идеале его номинальный ток должен быть такой же, как и у двигателя.

Второй способ

В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты.

При нажатии кнопки “Пуск” через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети.

При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети.

При отключении от сети проводов В и С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.

Третий способ

Защитное устройство основано на принципе создания искусственной нулевой точки (точка 1′), образованной тремя одинаковыми конденсаторами С1—СЗ. Между этой точкой и нулевым проводом 0′ включено дополнительное реле Р с нормально замкнутыми контактами.

При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает.

При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0′ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается.

Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1—СЗ— бумажные, емкостью 4—10 мкф, на рабочее напряжение не ниже удвоенного фазного.

Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, применив конденсаторы меньшей емкости.

Четвертый способ

Схема защитного устройства аналогична схеме, рассмотренной во втором способе. При нажатии кнопки “Пуск” включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.

Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.

В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.

Вариант 3

Этот вариант схемы трехфазного электрощита уже больше отвечает современным нормам электробезопасности. В нем после счетчика стоит общее УЗО. В текущем примере показано устройство защитного отключение с током утечки на 30мА. Данная схема щита полностью защищает человека от поражения электрическим током. Но есть некоторые минусы у использования всего одного УЗО 30мА на вводе:

  1. При его срабатывании будут одновременно отключаться все потребители в доме. Если это произойдет в темное время суток и поиск места утечки займет много времени, то это будет не очень удобно.
  2. Есть возможность появления ложного срабатывания УЗО из-за естественных токов утечки, которые присутствуют в бытовых приборах. В данной схеме также устанавливается одна общая нулевая шина после УЗО и одна общая шина заземления. Здесь с подключением кабелей от розеток сложно запутаться.

УЗО схема подключения

В квартирах подключение трехфазной сети встречается редко. Этот вариант популярен для частных домов. Аппарат защиты в них подключается несколькими способами:

  • Реле напряжения 380 В 2-полюсное для дома не подходит. Используют 4-полюсные аналоги. К ним подключают 1 нулевую жилу и 3 фазных. Схема усложнена тем, что каждая линия оснащена своим прибором УЗО. Важно правильно подобрать провода. Для однофазной сети подойдет стандартный вариант ВВГ, но для 3-фазной нужен устойчивый к возгоранию ВВГнг.
  • Общее УЗО для 3-фазной сети + счетчик. В схеме присутствует счетчик электроэнергии. Групповые УЗО находятся в системе обслуживания отдельных линий. Эта схема требует установки большого электрощита с множеством проводов и электроприборов.

Если в квартире или доме большое количество осветительных и розеточных контуров, а также разнообразных бытовых приборов, желательно установить двойную защиту с общим УЗО.

Схема защиты трехфазного электродвигателя при возникновении неполнофазного режима работы

Схема, представленная ниже может быть использована для реализации управления и защиты трехфазных электродвигателей малой и средней мощности от неполнофазных режимов работы.

Это несколько измененная стандартная схема подключения трехфазного двигателя через магнитный пускатель, отличающаяся включением в нее дополнительного магнитного пускателя.

Обесточивание электродвигателя при возникновении неполнофазного режима работы осуществляется размыканием питающей цепи катушки пускателя КМ1.

Схема выполнена таким образом, что питание двигателя подается через силовые контакты пускателя КМ1, чья катушка (обязательно должна быть на рабочее напряжение 380 В) запитана через один из силовых контактов второго пускателя КМ2 (для наглядности выделен красным пунктиром). Иначе говоря, для пуска необходима сработка обоих контакторов.

Ввиду небольшого тока потребления катушки пускателя вместо силового контакта КМ2 вполне может быть использован его дополнительный нормально разомкнутый контакт.

  • Главная
  • Электросхемы
  • Схема защиты электродвигателя

Итоги

Все что мы посмотрели актуально как для трехфазного, так и для однофазного электрощита, ну за исключением того, что на однофазных будут вместо четырехполюсных УЗО и рубильников двухполюсные и не надо делить мощность по фазам. Просто решил показать на примере свежей работы, ну и 3-фазный — наиболее общий случай.

Что касается выбора той или иной схемы электрического щита. Выбор за Вами. Я лишь могу подвести итог собственным видением рейтинга рассмотренных схем. Речь идет не о надежности, а скорей о функциональности схемы. Чем функциональней схема, тем меньше хлопот она доставляет пользователю при локализации проблемного участка сети в случае срабатывания дифзащиты на одной из линий. Что касается надежности, то все эти схемы одинаково надежны, если правильно подобраны параметры модулей и выполнена качественная сборка.

Итак, в моем понимании лидера у нас два: вариант на дифавтоматах (он же самый дорогой в обзоре) и вариант №4 на УЗО + однополюсный автомат для каждой линии. Электрощиты на обеих этих схемах самостоятельно локализуют проблему в границах проблемной линии при срабатывании на ней дифзащиты, оставляя в работе все остальные линии. Вмешательство человека для локализации проблемы не требуется, а необходимо лишь для ее устранения.

На третьем месте схема электрического щита на двухполюсных автоматах под групповыми четырехполюсными УЗО. Эта схема, вне зависимости откуда была утечка с фазы или ноля, позволит выявить проблемную линию и локализовать проблему в ее границах, пощелкав выключателями модулей по простому алгоритму. Т.е. здесь уже для локализации проблемы требуется вмешательство человека.

Ну и замыкает рейтинг схема с однополюсными автоматами под групповыми 4-полюсными УЗО. Здесь для определения проблемной линии при утечке с ноля на землю придется открывать щит и оперировать не только выключателями, но и отверткой. Либо вызывать электрика.

Я рассмотрел только отключаемые линии и обошел стороной неотключаемые. Что касается неотключаемых в 3-фазных щитах, здесь тоже есть варианты и есть из чего выбирать. Чтобы не раздувать этот пост, опубликую материал отдельной статьей.

голоса
Рейтинг статьи
Читать еще:  Генератор в 406 двигателе причины
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector