Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическое управление работой двигателя

Схема Управления Электрическим Двигателем

После восстановления нормального напряжения самопроизвольного пуска двигателя не произойдет. Типовые схемы управления АДс фазным ротором.


Схема управления асинхронным двигателем с использованием динамического торможения.

Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки. При достижении заданного уровня реле снова сработает и разомкнет контакт РДmax.
Схемы управления магнитным пускателем

Контактор К обеспечивает минимальную защиту по напряжению.

Остановка двигателя производится нажатием кнопки SВ3, что вызовет отключение всех контакторов от сети и торможение двигателя выбегом.

Начинается процесс торможения двигателя выбегом под действием момента нагрузки на его валу. На рис.

Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.

Сервопривод Устройство позволяет точно контролировать угловое положение, скорость и ускорение исполнительного механизма посредством управления синхронным электродвигателем обычно СДПМ. Регулирование скорости рабочего органа машины или механизма.

схема подключения двигателя по реверсивной схеме

Как можно управлять скоростью вращения двигателя?

Очевидно, что двигатель в обычном режиме работы от сети (электрического шкафа) имеет стандартную скорость/частоту вращения. Это ограничивает прямое его использование, вынуждая применять различные редукторные механизмы для понижения частоты до требуемой. Но даже тогда нет возможности динамично менять обороты, а вместе с ними, мощность, подачу, поскольку все равно остаются фиксированными частоты на выходе из двигателя и редуктора. Для расширения существующих рамок используют разные способы управления (частотные, импульсные, фазные и т. д), которые можно разделить на две большие группы:

  1. Скалярное. Как правило, используется на приводных двигателях компрессорных, вентиляторных, насосных и прочих механизмов, где требуется контроль скорости вращения или любого другого параметра, связанного с датчиками,
  2. Векторное. Это усовершенствованная концепция, которая предполагает раздельный, независимый контроль, изменение момента и магнитного потока. Токосцепление ротора поддерживается на постоянном уровне, что позволяет сохранить максимальный показатель момента.

Управление асинхронным двигателем

Отличие скалярного от векторного управления как раз заключается в возможности осуществления контроля возбуждения (потока). Фактически, он представляется как двигатель постоянного тока, имеющий независимые друг от друга обмотки. Такой подход позволяет создать подобную математическую модель системы работы контроллера.

Читать еще:  Что такое минералка для двигателя

КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Конструкция коллекторных электродвигателей содержит в своем составе следующие обязательные компоненты:

  • ротор особой конструкции;
  • статор с основными и возбуждающими обмотками;
  • коллекторный узел с комплектом щеток.

Основа ротора (якоря) – магнитопровод из пластин электротехнической стали, между полюсами которого при изготовлении по определенной схеме укладываются витки медного провода.

Концы обмоток выводятся на коллекторный узел, являющийся коммутаторной частью системы (здесь осуществляется их переключение). С его помощью обмотка якоря соединяется со статорной в последовательную цепочку. При этом создаваемое в ней поле взаимодействуют с магнитным потоком статора, создавая необходимый вращающий момент.

Преимущества и недостатки.

К достоинствам коллекторных двигателей переменного тока относят плавность запуска и простоту схемы возбуждающей цепочки, включенной последовательно с основной обмоткой. Отмечается также возможность получения значительных по величине вращательных моментов. Эти изделия надежны в работе и хорошо «держат» предельные нагрузки на валу.

Недостатки этих агрегатов представлены ниже:

  • повышенный уровень шумности;
  • низкий по сравнению с бесколлекторными конструкциями кпд;
  • необходимость постоянного обслуживания коллекторного узла из-за износа и загрязнения его элементов (ламелей);
  • потребность в обновлении и регулировки щеток;
  • высокий уровень радиопомех.

К минусам коллекторных электродвигателей также относят недостаточную надежность рабочих узлов и малые сроки эксплуатации входящих в их состав элементов.

Области применения.

Область применения коллекторных двигателей определяется особенностью их конструкции.

При частоте сетевого напряжения 50 Гц скорость вращения вала у этих изделий достигает 9000-10000 об/мин. Именно поэтому двигатели с коллекторным узлом типа широко применяются в бытовой аппаратуре самого различного класса.

Это:

  • стиральные машины;
  • электромясорубки, кофемолки и миксеры;
  • электроинструмент (дрели, болгарки, перфораторы и т. п.).

Сегодня традиционные коллекторные двигатели везде, где это возможно, заменяются современными бесщеточными агрегатами.

С расширением и удешевлением современной электронной базы их производство становится более выгодным. Одновременно совершенствуются схемы управления, работающие на полупроводниковых элементах различного класса.

Индуктивные нагрузки

При выборе индуктивной нагрузки, представленной двигателем, решение проблемы режима плавного управления мощностными показателями мотора не всегда дается легко, что зависит от нескольких факторов, представленных:

  • мощностными показателями движка;
  • инерционностью нагрузочного уровня вала;
  • реактивными обмоточными показателями;
  • активными обмоточными показателями.
Читать еще:  Что такое маховик двигателе мотоцикла

Управление двигателями постоянного тока

Оптимальным вариантом для решения практически всех перечисленных выше проблем является использование частотных инверторов.

Индуктивный тип схемы для управления двигателем ПТ не отличается особой сложностью по сравнению с частотным управлением, а также способен обеспечивать вполне приемлемую результативность.

Для получения высоких показателей – жесткие требования

Основными требованиями, предъявляемыми к электрическим двигателям электрокаров являются: высокая мгновенная мощность и высокая плотность мощности; высокий крутящий момент на низких скоростях для старта и набора скорости, а также высокая мощность на высокой скорости для крейсерского движения; очень широкий диапазон скоростей, включая области постоянного крутящего момента и постоянной мощности; быстрый отклик крутящего момента; высокая эффективность в широком диапазоне скоростей и крутящего момента; высокая эффективность рекуперативного торможения; высокая надежность и надежность для различных условий эксплуатации автомобиля; и разумная стоимость.

Кроме того, в случае неисправной работы, электрический двигатель должен быть отказоустойчивым. Наконец, с промышленной точки зрения, дополнительным критерием выбора является степень приемлемости на рынке для каждого типа двигателя, которая тесно связана со сравнительной доступностью и стоимостью связанной с ним технологии преобразования мощности

Управление шаговым двигателем

Шаговые двигатели, так же как и коллекторные, состоят в основном из катушек. То есть для вращения нужно пропустить ток через катушки. Таким образом, все из представленных схем управления двигателями могут быть использованы и для управления шаговым двигателем. (все, кроме H-моста)
Разница в схеме усилителя мощности для шаговых двигателей заключается в том, что здесь немного другие напряжения и токи, и также в основном требуется 4 переключателя на один двигатель (когда двигатель имеет пять контактов).

Номинальное рабочее напряжение, в основном, находится в диапазоне 9 — 24 В. При таких не малых напряжениях мы имеем дело также с большим током: 0,3 — 1A на одну фазу! Ниже приведен пример подключения шагового двигателя с 5 выводами:

В роли ключей мы можем также использовать MOSFET — транзисторы. Это даже более простое решение.
Так как нам нужно до 4-х транзисторов, которые занимают довольно много места на плате, хорошим решением будет использовать микросхему ULN2003A.

Читать еще:  Алгоритм работы асинхронного двигателя

Типы двигателей и как подобрать нужный двигатель

Существует две основные категории двигателей: переменного тока (AC) и постоянного тока (DC).

Двигатели постоянного тока были изобретены первыми и по-прежнему являются самым простым видом двигателей. DC двигатели приводятся в движение путем пропуска тока через проводник внутри магнитного поля. Основными типами электродвигателей постоянного тока являются щеточные двигатели постоянного тока и бесщеточные двигатели постоянного тока. Энергия щеточных двигателей генерируется подключением противоположных полюсов источника питания для подачи отрицательных и положительных зарядов в коммутатор при его физическом контакте с щетками. Такие электродвигатели отличаются своей простотой и низкой стоимостью, но требуют частого техобслуживания, так как щетки нуждаются в регулярной чистке и замене. Для того, чтобы работа приборов была более надежной, эффективной и менее шумной, используют бесщеточные двигатели постоянного тока. Они легче по сравнению с щеточными двигателями при одной и той же выходной мощности, практически не требуют техобслуживания, но значительно дороже.

Двигатели переменного тока можно разделить на два основных типа: асинхронные и синхронные. Выделяют ещё один, менее распространенный тип — линейные AC двигатели.

Можно сказать, что AC двигатели состоят из двух основных частей: внешняя часть (статор) и внутренняя (ротор). Статор – это стационарная часть двигателя с катушками, на которые подается переменный ток для создания вращающегося магнитного поля. А ротор соединен с валом, который создает другое вращающееся магнитное поле.

Линейные двигатели схожи с вращающимися двигателями, но в них движущиеся и неподвижные части расположены по прямой линии, и в итоге они создают линейное движение.

Индукционные (асинхронные) электродвигатели называются таковыми, поскольку крутящий момент создается с помощью электромагнитной индукции. Они известны также как двигатели с короткозамкнутым ротором или фазным ротором.

Синхронные двигатели отличаются от асинхронных тем, что они работают с точной синхронизацией с частотой сети. Напротив, асинхронные двигатели используют индуктивный ток для создания магнитного поля и требуют некоторого «скольжения» (немного более медленного вращения), чтобы вызвать ток.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector