Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электродинамика что такое двигатель

  • Оборудование
  • Розетки и выключатели

Бесконтактные моментные двигатели не имеют корпуса, подшипников, встраиваются в управляемый объект без редуктора. Отсутствие механической передачи исключает люфты, упругие деформации, которые влияют на полосу пропускания и точность управляемого привода.

Используются в станкостроении, робототехнике, без редукторных лебедках, стабилизирующих устройствах и др.

Краткое содержимое статьи:

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно его приобрести.

Получите невероятные возможности

Конспект урока «Что такое электродинамика»

Сегодня мы начинаем изучение нового раздела, который называется электродинамикой. Электродинамика — это наука о свойствах и закономерностях поведения электромагнитного поля, посредством которого происходит взаимодействие электрически заряженных частиц и тел.

Напомним, что электромагнитное взаимодействие является одним из четырех типов фундаментальных взаимодействий.

Именно электромагнитные взаимодействия имеют наиболее разнообразные проявления. Электромагнитные явления позволяют видеть все, что вы видите вокруг себя, поскольку свет является одной из форм электромагнитного поля, а без света нельзя было бы что-либо увидеть.

Открытия в области электродинамики кардинально изменили жизнь человечества. Утюг, стиральная машина, мобильный телефон, компьютер, телевизор — это всего лишь несколько примеров среди сотен других, которые позволяют понять, насколько большую роль электромагнитные явления играют в жизни человека.

Изучая молекулярную физику, мы говорили о том, что все тела состоят из молекул, которые, в свою очередь, состоят из атомов. Атомы электрически нейтральны, но включают в себя заряженные частицы, которые называются электронами и протонами. Из курса физики восьмого класса вы знаете, что протон и электрон обладают зарядами, равными по модулю, но электрон — это отрицательно заряженная частица, а протон — положительно заряженная частица.

Электроны могут отрываться от атомов. Если атом теряет электрон, то он становится положительным ионом, а атом, который приобретает электрон, становится отрицательным ионом.

Напомним еще раз, что электрический заряд — это физическая величина, характеризующая силу взаимодействия заряженных тел.

Заметим, что тела становятся заряженными только из-за перераспределения зарядов. Это плавно подводит нас к закону сохранения электрического заряда, о котором мы поговорим чуть позже. Напомним также, что существуют два рода зарядов: положительный и отрицательный. Существует также, такое понятие как элементарный заряд. Это наименьший заряд в природе, то есть заряд электрона. Именно факт существования наименьшего электрического заряда позволил понять, что электризация тел есть ни что иное, как перераспределение электрических зарядов.

В выдвижении гипотез о природе электрического поля принимал участие небезызвестный президент США Бенджамин Франклин, который выдвинул унитарную теорию электричества. Он предположил, что электричество — это некая невесомая жидкость, способная перетекать из одного тела в другое. Электризацию тел Франклин объяснял тем, что в этой жидкости иногда был избыток электрического флюида, а иногда — недостаток. Так появилось понятие отрицательных и положительных зарядов. Как мы понимаем сейчас, под этими флюидами следует понимать электроны, о которых Франклин не знал.

Позднее, Шарль Дюфе и Роберт Симмер, проводя свои опыты, предположили, что существует два вида электричества, которые при соприкосновении нейтрализуют друг друга. Опять же, сейчас мы понимаем, что тело просто становилось электрически нейтральным, получив одинаковое количество положительных и отрицательных частиц.

В итоге, Андре Ампер, представляя свой труд в Парижской академии наук, решил принять одно из направлений токов за основное: «Так как мне пришлось бы постоянно говорить о двух противоположных направлениях, по которым текут оба электричества, то, во избежание излишних повторений, после слов «направление электрического тока», я буду всякий раз подразумевать направление положительного электричества».

Конечно, в наше время не существует понятия положительного электричества, — есть только положительные заряды или полюса источника. Однако, Ампер внес большой вклад в изучение электрических явлений, и в его честь была названа единица силы электрического тока.

В результате подобных исследований, было выяснено, что одноименные заряды отталкиваются, а разноименные заряды притягиваются. Также был открыт очень важный закон, который называется законом сохранения электрического заряда. Он гласит, что в изолированной системе алгебраическая сумма зарядов всех частиц сохраняется:

Под изолированной системой подразумевается система, в которую не приходят заряды извне и которую заряды не покидают.

Если число заряженных частиц остается постоянным, то справедливость закона сохранения электрического заряда не вызывает сомнений. Однако, следует отметить, что частицы могут превращаться друг в друга посредством слабого взаимодействия. Тем не менее, было установлено, что частицы рождаются только парами с зарядами равными по модулю и противоположными по знаку. Или же, напротив, заряженные частицы исчезают тоже только парами с зарядами равными по модулю и противоположными по знаку. В этом случае, они превращаются в две электрически нейтральных частицы.

Читать еще:  Шевроле лачетти седан характеристика двигателя

Краткая история создания

Впервые возможность превратить электричество в механическую энергию открыл британский ученый М.Фарадей еще в 1821 году. Его опыт с проводом, помещенным в ванну с ртутью, оснащенной магнитом, показал, что при подключении провода к источнику электроэнергии он начинает вращаться. Этот нехитрый опыт наверняка многие помнят по школе, правда, ртуть там заменяется безопасным рассолом. Следующим шагом в изучении этого феномена было создание униполярного двигателя – колеса Барлоу. Никакого полезного применения он так и не нашел, зато наглядно демонстрировал поведение заряженного проводника в магнитном поле.

На заре истории электродвигателей ученые пытались создать модель с сердечником, двигающимся в магнитном поле не по кругу, а возвратно-поступательно. Такой вариант был предложен, как альтернатива поршневым двигателям. Электродвигатель в привычном для нас виде впервые был создан в 1834 году русским ученым Б.С. Якоби. Именно он предложил идею использования вращающегося в магнитном поле якоря, и даже создал первый рабочий образец.

Первый асинхронный двигатель, в основе работы которого заложено вращающееся магнитное поле, появился в 1870 году. Авторами эффекта вращающегося магнитного поля независимо друг от друга стали два ученых: Г.Феррарис и Н. Тесла. Последнему принадлежит также идея создания бесколлекторного электродвигателя. По его чертежам были построены несколько электростанций с применением двухфазных двигателей переменного тока. Следующей более удачной разработкой оказался трехфазный двигатель, предложенный М.О. Доливо-Добровольским. Его первая действующая модель была запущена в 1888 году, после чего последовал ряд более совершенных двигателей. Этот русский ученый не только описал принцип действия трехфазного электродвигателя, но и изучал различные типы соединений фаз (треугольник и звезда), возможность использование разных напряжений тока. Именно он изобрел пусковые реостаты, трехфазные трансформаторы, разработал схемы подключения двигателей и генераторов.

Типы двигателей

Основные типы двигателей асинхронного типа:

  1. Мотор однофазного типа, оборудованный ротором с короткозамкнутой намоткой. В конструкции статора предусмотрена рабочая намотка для 1-й фазы, но для раскрутки вала двигателя используется пусковой элемент. Дополнительные витки провода подключаются через конденсатор или катушку индуктивности. Схема коммутации обеспечивает сдвига фаз, позволяющий провернуть стальной ротор.
  2. Двигатель двухфазного или конденсаторного типа, отличающийся повышенной эффективностью при коммутации к бытовой сети переменного тока напряжением 220 В. В конструкции статора предусмотрены 2 катушки, смонтированные под углом 90°. Первичная намотка коммутируется к сети напрямую, а вторичная подсоединяется через емкость, обеспечивающую смещение фазы.
  3. Агрегат трехфазного типа оборудован 3 неподвижными обмотками, установленными через 120°. После подачи напряжения формируется вращающееся магнитное поле, обеспечивающее поворот вала с короткозамкнутыми витками провода. Выводы статора соединяются “звездой” или “треугольником”, что допускает применение электромотора при напряжении 220 или 380 В. Изделия подобной конструкции используются в станках и грузоподъемных механизмах.
  4. Трехфазная машина с фазной обмоткой оснащается подвижным ротором с сердечником с пазами, в который уложены витки медного провода. В остальных конструкциях в сердечнике находятся алюминиевые элементы. Концы проводки, соединенной “звездой” выведены на коллекторные кольца, которые изолированы от стальной оси двигателя. При помощи щеток на кольца подается переменное напряжение, обеспечивающее при пуске увеличенный крутящий момент. Устройства используются в механизмах, включаемых под нагрузкой (например, лебедки лифтов).

Существуют моторы с питанием роторных катушек при помощи несимметричного раствора щеток. В конструкции подвижного элемента установлены 2 катушки, которые подключены к внешней сети и к вторичной неподвижной намотке на статоре. Конструкция позволяет регулировать частоту вращения, но отличается повышенной сложностью и требует регулярного обслуживания.

Изделия использовались в 30-40-х гг. прошлого столетия для привода промышленного оборудования, но затем были вытеснены стандартными электродвигателями с фазными роторами.

Электромеханическое подобие.

Между индуктивностью (L) в электродинамике и массой m в механике несложно отметить некоторое подобие. Не секрет, чтобы разогнать некоторый объект до конкретной скорости, потребуется израсходовать определённый промежуток времени, потому что моментально добиться большой скорости любого объекта практически не предоставляется возможным. При постоянной интенсивности, приложенной к объекту, данный промежуток времени имеет прямую зависимость от массы объекта.

Для достижения тока в катушке индуктивности своей предельной величины, потребуется определённый промежуток времени для создания индуктивности (L) в катушке. Скорость объекта будет самопроизвольно падать, когда частицы в электрическом поле сталкиваются с постоянным препятствием. Препятствие воспринимает столкновение с частицами, и уничтожающая сила становиться больше, чем значительнее масса объекта.

В реальности любые электромеханические подобия распространяются на многие показатели объектов и относятся не исключительно к индуктивности и массе, а также к иным показателям, которые оказываются очень конструктивными в практической деятельности. Понимание целостности и стабильности электрического и магнитного взаимодействия является основным фактом теории объединения физических взаимосвязей, которые подтверждены. На современном этапе подтверждено, что электродинамика и небольшая взаимосвязь при больших энергиях соединяются в общем процессе.

Читать еще:  Д 30кп запуск двигателя

Не нашли нужную информацию?

Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.

Гарантия низких цен

Все работы выполняются без посредников, поэтому цены вас приятно удивят.

Доработки и консультации включены в стоимость

В рамках задания они бесплатны и выполняются в оговоренные сроки.

Вернем деньги за невыполненное задание

Если эксперт не справился – гарантируем 100% возврат средств.

Тех.поддержка 7 дней в неделю

Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.

Тысячи проверенных экспертов

Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».

Гарантия возврата денег

Эксперт получил деньги, а работу не выполнил?
Только не у нас!

Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока

Гарантия возврата денег

В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы

Торможение противовключением

Схема торможения противовключением

На практике режим противовключения может быть организован несколькими разными способами. Классическим является использование пары магнитных пускателей, подключенных по реверсной схеме. В этом случае, быстрая остановка агрегата осуществляется за счет изменения положения фаз (противовключение).

Основной пускатель КМ2 производит отключение двигателя М от сети. После этого параллельный пускатель КМ1 опять включает двигатель, меняя при это крайние фазы местами, то есть заставляя его вращаться в обратную сторону. Чтобы не допустить чрезмерного перегрева в цепь может быть введено дополнительное сопротивление. Также схема противовключения может быть реализована, если двигатель использовать в качестве тормоза для груза.

Как моделировать устройства, основанные на электродинамической магнитной левитации

Электродинамическая магнитная левитация может возникнуть при наличии переменного магнитного поля в окрестности проводящего материала. В этой статье мы расскажем и покажем, как моделировать магнитную левитацию, на двух примерах: верификационной задаче TEAM про устройство, основанное электродинамической левитации и модели электродинамического колеса.

Что такое электродинамическая магнитная левитация?

Явление электродинамической магнитной левитации возникает, когда вращающийся и/или движущийся постоянный магнит либо катушка с током создают переменное магнитное поле близи проводника. Переменное магнитное поле наводит вихревые токи в проводнике, которые создают поле в противоположном направлении. Оно, в свою очередь, создаёт отталкивающую силу между проводящим материалом и источником магнитного поля. Этот процесс является основополагающим принципом действия всех магнитных левитирующих устройств.


Магнит, левитирующий над сверхпроводником. Изображение предоставлено Julien Bobroff. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons.

Анализ эталонной задачи на электродинамическую левитацию

Рассмотрим верификационную задачу №28, описанную в Testing Electromagnetic Analysis Methods (TEAM) (от общества Compumag) и посвященную расчету электромагнитного левитирующего устройства В данной задаче круглый алюминиевый проводящий диск расположен над двумя цилиндрическими, концентрическими катушками переменного тока, протекающего в противоположных направлениях. Поперечное сечение элементов задачи показано на рисунке ниже.


Поперечное сечение концентрических катушек и алюминиевого диска. Все размеры указаны в миллиметрах.

3D модель изображена ниже.


3D-модель электродинамического левитирующего устройства. На ней изображёны левитирующий диск и две концентрических катушки переменного тока, протекающего в противоположных направлениях.

Для моделирования такого устройства в программном обеспечении COMSOL Multiphysics® мы используем 2D осесимметричную геометрию. Будем использовать физический интерфейс Magnetic Fields (Магнитные поля), который доступен в модуле AC/DC и позволяет корректно описать переменные токи в катушках, а также наводимые вихревые токи. Концентрические катушки с протекающими в противоположных направлениях токами опишем с помощью двух отдельных узлов Coil (Катушка), выбрав в настройках Homogenized Multi-Turn Coil (Гомогенизированная многовитковая катушка). Электродинамическая сила, возникающая в алюминиевом диске, будет рассчитана с помощью узла Force Calculation (Расчёт силы), который вычисляет тензор напряжений Максвелла.

Динамика твёрдого тела задаётся обыкновенным дифференциальным уравнением (ОДУ, англ. ODE) в физическом интерфейсе Global ODEs and DAEs. ОДУ первого порядка, задающие положение и скорость имеют следующий вид:

Так как электродинамическая сила изменяется в зависимости от расстояния между диском и катушками, наша модель должна учитывать динамику изменения положения диска. Для этого мы воспользуемся интерфейсом Moving Mesh (Подвижная сетка). Ниже на графике мы привели сравнение опорных данных, указанных в тесте TEAM, и результатов, полученных с помощью моделирования в COMSOL.

Читать еще:  Chpa двигатель какое масло


Сравнение результатов моделирования и данных TEAM на одном графике. Показана зависимость перемещения диска от времени.

Анимация перемещения диска над двумя концентрическими катушками в течении 0.6 с.

Моделирование электродинамического колеса в COMSOL Multiphysics®

Механические вращение источников магнитного поля, таких как радиально намагниченный ротор Халбаха, наводит вихревые токи в проводящем материале (например, алюминии). Они создают противоположно направленное магнитное поле, которое взаимодействует с источником магнитного поля и отталкивает его. Одновременно создаются подъемная сила и сила тяги. Такое устройство называется электродинамическим колесом (ЭДК).

На рисунке ниже показан принцип левитации ЭДК при высокоскоростном движении. Сила тяги или тормозящая сила зависят от относительной скорости скольжения, sl, которая определяется, как разница между азимутальной vc и поступательной vx скоростями. Например, sl = vcvx, где vc = ωmro и ωm = ωeP. Где ωm — это механическая угловая скорость, ωe — электрическая угловая скорость, P — число пар полюсов ротора Халбаха.


Конструкция четырёхполюсного ЭДК, основанного на принципе магнитной левитации (maglev — маглева). На рисунке изображёны проводящий слой и вращающийся и/или перемещающийся ротор Халбаха.

Если азимутальная скорость больше, чем поступательная (скольжение положительно), то создаётся подъёмная сила. В противном случае создаётся тормозящая сила.

Используя физический интерфейс Rotating Machinery in 2D and 3D, Magnetic (Вращающиеся машины в 2D и 3D), мы можем учитывать оба этих движения в одной модели. Вращательное движение задаётся узлом Prescribed Rotational Velocity (Заданное вращательное движение). Поступательное движение ротора Халбаха задаётся в противоположном направлении узлом Velocity (Lorentz) (Скорость по Лоренцу). Постоянные магниты задаются узлами Ampère’s Law (Закон Ампера) с указанием остаточной магнитной индукцией Br = 1.42[Тл]. Так как намагниченность создаётся в радиальном или азимутальном направлениях, для удобства выберем цилиндрическую систему координат.

В итоге, было выполнено моделирование переходного процесса для разных механических угловых скоростей ротора. На графиках ниже показаны зависимости подъёмной силы и силы тяги от времени. Две этих силы вычисляются различными способами: расчётом тензора напряжений Максвелла и методом Лоренца.

На графиках изображены зависимости подъёмной силы и силы тяги от времени. Синим цветом показан расчёт тензора напряжений Максвелла, зелёным — метод Лоренца.

На втором этапе проводилось стационарное исследование для различных поступательных скоростей. Тормозящая сила возникает при отсутствии вращения или если азимутальная скорость меньше, чем прямолинейная. Результаты моделирования подъёмной и тормозящей силы для различных скоростей показаны на графиках ниже.

Зависимости подъёмной и тормозящей силы от времени. Синим цветом показан расчёт тензора напряжений Максвелла, зелёным — метод Лоренца.

Анимация показывает поверхностный график распределения магнитного поля в воздухе и магнитах; плотность тока в проводящем слое; силовые линии векторного магнитного потенциала, Az. Изображено вращение ротора по часовой стрелке и взаимодействие полей.

Выводы по моделированию электродинамической магнитной левитации

В данной статье мы показали, как моделировать два электродинамических магнитных устройства, используя модуль AC/DC пакета COMSOL Multiphysics. Мы разобрали верификационную задачу №28 от TEAM: Электродинамическое левитирующее устройство и сравнили результаты моделирования с данными эксперимента. Также мы постарались доступно объяснить принцип действия электродинамического колеса, основанного на явлении магнитной левитации. Наши результаты моделирования оказались довольно точными и полностью сошлись с экспериментальными результатами.

Дополнительные ресурсы

  • Узнайте больше о примерах, представленных в данной статье:
    • Задача TEAM №28: Электродинамическое левитирующее устройство
    • Электродинамическое левитирующее колесо в 2D
  • Ознакомьтесь с тем, как другие пользователи COMSOL Multiphysics решают подобные задачи
    • Студенческий конкурс проектов Hyperloop: использование моделирования для оптимизации магнитной системы
  • Следите за нашим блогом по проектированию Электромагнитных устройств
  • Захотелось заняться моделированием устройств, основанных на принципе магнитной левитации в COMSOL Multiphysics или у вас остались какие-либо вопросы по поводу данной статьи? Свяжитесь с нами

Рубрики блога

Я соглашаюсь с тем, что COMSOL будет собирать, хранить и обрабатывать мои персональные данные согласно моим настройкам и Политике конфиденциальности COMSOL . Я соглашаюсь получать электронные письма от COMSOL AB и его аффилированных компаний о блоге COMSOL. Это согласие может быть отозвано.

Рекомендуемые публикации

Мультифизический анализ термического микроактуатора

Электромагнитный расчет и оптимизация планарных катушек на печатных платах

Вихретоковые тормозные системы как способ избавления от трения

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector