Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электроинструмент какой тип двигателя

Характеристики электроинструментов и их значение

На сайте partnerlip.ru можно приобрести качественное и недорогое электрооборудование для строительных работ. Основные преимущества электроинструментов: мощность, крутящий момент, скорость, вес и энергия удара.

Мощность электроинструмента

Отношением объёма работы к времени, за которое оно было исполнено, измеряется мощность инструмента. Мощность из двигателя распределяется на скорость и крутящий момент.

Для каждого вида работ мощность играет свою роль:

  • Просверливать — размер и глубина отверстий;
  • Распиливать — легче работать с твёрдыми материалами;
  • Строгать и шлифовать — улучшенная производительность;
  • Использование шуруповёрта — возможность заворачивать крупногабаритные крепежи.

Производители указывают мощность в Ваттах. Однако, при работе с аккумуляторным оборудованием значение мощности будет ровняться напряжению батареи. Максимально это может быть 36V — 1000-1500 Ватт. Единственный недостаток аккумуляторов — ограниченное время работы, после чего нужно заряжать батарею.

От мощности зависит и цена техники. Поэтому не стоит торопиться и покупать всё самое мощное. Необходимо отталкиваться от требований работы. Если с поставленной задачей может справиться оборудование с мощностью 300-500 Вт, то нет смысла приобретать мощнее с более высокой ценой.

Крутящий момент электроинструмента

Вращение вала характеризуется крутящим моментом. Измерить его сложно, так как зависит от твёрдости и плотности используемых материалов, скорости. Поэтому чаще всего в технических параметрах крутящий момент не обозначают. Исключением является гайковёрты и шуруповёрты. У них вектор крутящего момента одинаковый с направлением силы. От этого она основная и указывается всегда. Но малоизвестные или молодые фирмы не уделяют достаточного внимания испытаниям техники и значительно завышают возможности.

Бывает два вида крутящего момента:

  1. Мягкий — когда в стандартном режиме показатель снижается.
  2. Жёсткий — показатель крутящего момента увеличивается. Например, при сильном сопротивлении материала.

Скорость работы электроинструмента

С другой стороны увеличенная скорость способствует хорошей работе фрезера, рубанка, УШМ и дисковых пил и прочих подобных инструментов.

Вес электроинструмента

При работе не малую роль играет и вес электрооборудования. В основном, самое тяжелое это двигатель инструмента. Помимо этого на вес влияют:

  • Материал, из которого сделана техника.
  • Мощность.
  • Наличие аккумуляторной батареи.

Энергия удара

У некоторых инструментов (например: перфораторы и отбойники) есть такой пункт в характеристике — энергия удара. Обозначают её Джоулях. От неё и от количества ударов в минуту зависит производительность. Иногда для эффективности техники хватает только количество ударов, но в таких случаях понадобится больше прикладывать физической силы.

Таблица. Диапазон значений основных характеристик электроинструментов

Бесколлекторный двигатель

Если в коллекторном двигателе всё приходит в действие за счёт механики, то в бесщёточном — чистая электроника. Также позиции некоторых элементов в конструкции меняются местами. В коллекторном двигателе обмотки находились на роторе, а постоянные магниты — на статоре. У бесколлеторного — постоянные магниты переносятся на ротор, а катушки с обмоткой располагаются на статоре. Также ротор и статор могут менять свои позиции: есть модели двигателей с внешним ротором. Здесь отсутствуют щётки и коллектор, вместо них добавлен микропроцессор (контроллер) и кулер для охлаждения системы. Микропроцессор контролирует положение ротора, скорость вращения, равномерное распределение напряжения по катушкам обмотки.

Основные типы бесщёточного двигателя :

  • Асинхронный — это двигатель, который преобразовывает электроэнергию переменного тока в механическую. Название происходит от разной скорости вращения магнитного поля и ротора. Частота вращения ротора меньше, чем у магнитного поля, создаваемого обмотками статора (Например, двигатель DigiPro, который используется в продукции Greenworks).
  • Синхронный — это двигатель переменного тока, у которого частота вращений ротора равна частоте вращений магнитного поля.

Тип двигателя с внешним ротором

Расположение ротора и статора в бесщёточном двигателе DigiPro

  • Из-за отсутствия щёток меньше трения.
  • Меньше подвержены износу.
  • Отсутствие искр и возможного возгорания.
  • Упрощенная регулировка крутящего момента в больших пределах.
  • Экономия расходуемой энергии.
  • У инструментов с реверсом одинаковая мощность в обоих направлениях вращения.
  • Быстрый запуск с больших скоростей.
  • Могут разгоняться до предельных показателей.
  • Некоторые модели при сильной нагрузке оснащены системой защиты двигателя.
  • Значительно дороже в цене, чем коллекторные двигатели.
  • Техническое обслуживание более узкоспециализированное.

Несомненно бесколлекторные двигатели ориентированы на профессиональные работы с приличной нагрузкой. Несмотря на высокие показатели усовершенствованного типа двигателя, его единственный недостаток бьёт по кошельку. И перед тем, как приобретать инструмент на том или ином двигателе, прежде всего надо поставить перед собой вопрос: для каких целей он нужен. Уже исходя из ответа делать свой выбор.

Сколько людей — столько и мнений. Компания Greenworks старается делать качественную продукцию на разных типах двигателя, чтобы каждый мог подобрать себе инструмент по предпочтениям, функционалу и необходимой мощности под конкретные задачи, которые у каждого клиента свои. Именно поэтому, например, в разделе «Ручной инструмент» Вы можете наблюдать один тип агрегата на коллекторном и бесколлекторном двигателях. Какой лучше? Выбор за Вами!

Читать еще:  Что такое демпфер коленвала двигатель

Классификация по сфере применения

В эту категорию входят 4 больших класса электроинструмента:

  1. Промышленный (Industrial). Применяется на конвейерном производстве. Основное требование, предъявляемое к нему – способность бесперебойно работать не менее 2 рабочих смен. Узкоспециализированный, так как ограничен максимум 1-2 операциями.
  2. Тяжело нагруженный (Heavy duty). Конструктивные особенности, которые отличают этот класс инструментов, таковы: высокая пыле — и влагозащита, повышенная прочность, а также ударостойкость. Являются узкоспециализированными, высокопрофессиональными, изготовляются в малых количествах, под заказ.
  3. Профессиональный (Professional). Ряд достоинств выделяет этот класс оборудования среди всех существующих: высокая прочность рабочих узлов, бесперебойность работы, неприхотливость, удобство эксплуатации. Также отличается более обширной специализацией, унификацией.
  4. Бытовой (Hobby). Основная особенность – малая мощность, низкий КПД, быстрая нагреваемость. Используется в основном для непостоянных, краткосрочных, разовых, несложных работ. Иногда такой инструмент называют «любительским», так как в основном он рассчитан на тех, кто ограничен в бюджете, не занимается постоянным ремонтом. При работе нужно делать перерыв по 15 мин каждые полчаса, так как оборудование слишком греется. Максимум работы в сутки – 4 часа. Бесперебойно работать нельзя, Иначе – сгорит!

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.
Читать еще:  Что такое мойка двигателя диэлектриком

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Классификация по электробезопасности

Эта классификация – по способу защиты от поражения электрическим током – и следующие являются самыми серьезными. В конце статьи они помещены потому, что для знакомства с ними нужно понимание, например, почему у профессиональных инструментов класс безопасности ниже (об этом рассказано в начале статьи).

Читать еще:  Штиль 128 какой двигатель

Классы электроинструмента и ручных электрических машин можно определить по маркировке.

КлассРабочая изоляцияЗаземлениеПредназначениеМеры предосторожности
ЕстьНетРабота в помещениях без повышенной опасностиИнструмент должен быть вмонтирован в прибор с заземленным корпусом
01ЕстьЗаземляющее приспособление без заземляющей жилы
1ЕстьЗаземляющее приспособление с жилой, вилка «земля – контакт»Работа в производственных помещениях и жилых домахПодключение к розетке, имеющей заземление. Работа в резиновых перчатках
2Двойная или усиленнаяНетРабота в производственных помещенияхНет (за исключением эксплуатации в колодцах и металлических емкостях)
3ЕстьНетЛюбые условия, в том числе в особо опасных помещенияхНет

Эта же классификация электроинструмента по электробезопасности применима к другим бытовым приборам: более всего среди техники распространен первый класс электробезопасности; третий – универсален.

Теперь давайте разберем принцип работы бесщеточного двигателя. Как понятно из названия, его принципиальное отличие в отсутствии щеток. Но как же он тогда работает? Как нужная энергия поступает в двигатель?

В устройстве бесщеточного двигателя также присутствует ротор и статор — основные элементы любого мотора. Но при этом отсутствует коллектор, соответственно и двигатель по-другому называется бесколлекторным. Если у щеточного двигателя работа происходит за счет электро-механической смены полярности, то в бесщеточном двигателе все работает благодаря электромагнитной индукции. Также отличается местоположение обмотки — здесь она располагается на статоре, в отличие от предыдущего вида двигателя.

Вместо щеток и коллектора в бесщеточном двигателе установлены датчики Холла и контроллер, который контролирует подачу напряжения на катушки для создания индуктивности, а также положение ротора и скорость его вращения.

Когда плата подает на обмотку ток, создается тоже противоположное магнитное поле, и магниты на роторе начинают вращаться.

Еще одной особенностью бесщеточных двигателей нужно назвать их типы. Двигатели бывают двух типов — синхронный и асинхронный. В синхронном двигателе частота вращений ротора равна частоте вращений магнитного поля — то есть один оборот ротор совершает после одного полного прохождения тока через катушку. А в асинхронном двигателе обратная ситуация — частота вращений ротора меньше, чем частота вращения магнитного поля. То есть ток проходит через катушку быстрее.

Управление приводом

В состав оборудования электроинструмента класса полупрофессионального и выше включаются электронные системы управления, которые осуществляют:

  • Плавный пуск двигателя.
  • Реверсирование.
  • Изменение частоты вращения.

Плавный пуск особенно необходим асинхронным двигателям большой мощности, в первый момент включения которого происходит короткое замыкание в роторе, сопровождающееся перегрузкой сети. Кроме того, вращающий момент растёт рывком, из-за чего может быть повреждён редуктор. Для компенсации этого эффекта используются тиристорные схемы, так называемые софтстартеры, которые плавно увеличивают по заданной программе подаваемое напряжение. Скорость вращения шпинделя инструмента с асинхронным двигателем обычно регулируется ступенчато, с помощью редуктора. Сама машина вращается на номинальных паспортных оборотах. Реверсирование происходит изменением точки подключения одной из фаз.

Ручной электрифицированный инструмент строится на основе двигателей постоянного тока или универсальных коллекторных, питающихся от бытовой сети 220 вольт. Обычно он не бывает мощнее 2 кВт, поэтому плавный пуск в нём необходим лишь для более точного выполнения работ. Реализуется он в обоих случаях одинаково – изменением величины питающего напряжения. Однако в двигателях постоянного тока это можно сделать лишь с помощью потенциометра (реостата), а в универсальных коллекторных и тиристорной схемой управления, аналогичной софстартерам. Последняя применяется в том случае, если мощность привода более 1 кВт. Эта же система обеспечивает и плавное изменение частоты вращения шпинделя. Реверсирование производится коммутацией точек подключения питания к обмоткам ротора, это может быть сделано как механическим устройством, так и электронной схемой.

Управление бесщеточными двигателями проще, оно может быть осуществлено схемой, отвечающей за переключение полюсов. При этом величина питающего напряжения не меняется, поэтому вращающий момент больше, чем у коллекторно-щёточных двигателей.

Элемент управления частотой вращения обычно совмещён с кнопкой «Пуск». Чем сильнее вы на неё нажимаете, тем быстрее вращается шпиндель. Существуют конструкции, когда на кнопке есть потенциометр, задающий максимальную частоту вращения. Скорость может устанавливаться и дискретно, колесиком с нанесёнными на него цифрами. Все органы управления обычно размещены неподалёку друг от друга.

Зная устройство вашего инструмента, вы будете лучше представлять и его возможности. А это поможет вам достичь лучших результатов в работе.

Новости на Блoкнoт-Волгоград

Будь в курсе событий!
Добавь «Блокнот Волгоград»
в избранное.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector