Mio-tech-service.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Энергетические режимы работы асинхронного двигателя

Общие сведения об асинхронных машинах.

Асинхронной машиной называется двухобмоточная электрическая машина переменного тока, у которой только одна обмотка (первичная) получает питание от электрической сети с постоянной частотой ω1, а вторая обмотка (вторичная) замыкается накоротко или на электрические сопротивления. Токи во вторичной обмотке появляются в результате электромагнитной индукции. Их частота ω2 является функцией угловой скорости ротора Ω, которая в свою очередь зависит от вращающего момента, приложенного к валу.

Наибольшее распространение получили асинхронные машины с трехфазной симметричной разноименнополюсной обмоткой на статоре, питаемой от сети переменного тока, и с трехфазной или многофазной симметричной разноименнополюсной обмоткой на роторе.

Машины такого исполнения называют просто «асинхронными машинами», в то время как асинхронные машины иных исполнений относятся к «специальным асинхронным машинам».

Асинхронные машины используются в основном как двигатели; в качестве генераторов они применяются крайне редко.

Асинхронный двигатель является наиболее распространенным типом двигателя переменного тока.

Разноименнополюсная обмотка ротора асинхронного двигателя может быть короткозамкнутой (беличья клетка) или фазной (присоединяется к контактным кольцам). Наибольшее распространение имеют дешевые в производстве и надежные в эксплуатации двигатели с короткозамкнутой обмоткой на роторе, или короткозамкнутые двигатели. Эти двигатели обладают жесткой механической характеристикой (при изменении нагрузки от холостого хода до номинальной их частота вращения уменьшается всего на 2—5%).

Двигатели с короткозамкнутой обмоткой на роторе обладают также довольно высоким начальным пусковым вращающим моментом. Их основные недостатки: трудность осуществления плавного регулирования частоты вращения в широких пределах; потребление больших токов из сети при пуске (в 5—7 раз превышающих поминальный ток).

Двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами избавлены от этих недостатков ценой усложнения конструкции ротора, что приводит к их заметному удорожанию по сравнению с короткозамкнутыми двигателями (примерно в 1,5 раза). Поэтому двигатели с контактными кольцами на роторе находят применение лишь при тяжелых условиях пуска, а также при необходимости плавного регулирования частоты вращения.

Двигатели с контактными кольцами иногда применяют в каскаде с другими машинами. Каскадные соединения асинхронной машины позволяют плавно регулировать частоту вращения в широком диапазоне при высоком коэффициенте мощности, однако из-за значительной стоимости не имеют сколько-нибудь заметного распространения.

В двигателях с контактными кольцами выводные концы обмотки ротора, фазы которой соединяются обычно в звезду, присоединяются к трем контактным кольцам. С помощью щеток, соприкасающихся с кольцами, в цепь обмотки ротора можно вводить добавочное сопротивление или дополнительную ЭДС для изменения пусковых или рабочих свойств машины; щетки позволяют также замкнуть обмотку накоротко.

В большинстве случаев добавочное сопротивление вводится в обмотку ротора только при пуске двигателя, что приводит к увеличению пускового момента и уменьшению пусковых токов и облегчает пуск двигателя. При работе асинхронного двигателя пусковой реостат должен быть полностью выведен, а обмотка ротора замкнута накоротко. Иногда асинхронные двигатели снабжаются специальным устройством, которое позволяет после завершения пуска замкнуть между собой контактные кольца и приподнять щетки. В таких двигателях удается повысить КПД за счет исключения потерь от трения колец о щетки и электрических потерь в переходном контакте щеток.

Читать еще:  Что такое двигатель td42

Выпускаемые заводами асинхронные двигатели предназначаются для работы в определенных условиях с определенными техническими данными, называемыми номинальными. К числу номинальных данных асинхронных двигателей, которые указываются в заводской табличке машины, укрепленной на ее корпусе, относятся:

механическая мощность, развиваемая двигателем, Рн = P2н;

частота сети f1;

линейное напряжение статора U1лн

линейный ток статора I1лн;

частота вращения ротора nн;

коэффициент мощности cos φ1н;

коэффициент полезного действия ηн.

Если у трехфазной обмотки статора выведены начала и концы фаз и она может быть включена в звезду или треугольник, то ука-зываются линейные напряжения и токи для каждого из возможных соединений (Υ/Δ).

Кроме того, для двигателя с контактными кольцами приводится напряжение на разомкнутых кольцах при неподвижном роторе и линейный ток ротора в номинальном режиме.

Номинальные данные асинхронных двигателей варьируются в очень широких пределах. Номинальная мощность — от долей ватта до десятков тысяч киловатт. Номинальная синхронная частота вращения п1н = 60 f1/р при частоте сети 50 Гц от 3000 до 500 об/мин и менее в особых случаях; при повышенных частотах — до 100 000 об/мин и более (номинальная частота вращения ротора обычно на 2—5% меньше синхронной; в микродвигателях — на 5—20%). Номинальное напряжение от 24 В до 10 кВ (большие значения при больших мощностях).

Номинальный КПД асинхронных двигателей возрастает с ростом их мощности и частоты вращения; при мощности более 0,5 кВт он составляет 0,65—0,95, в микродвигателях 0,2—0,65.

Номинальный коэффициент мощности асинхронных двигателей, равный отношению активной мощности к полной мощности, потребляемой из сети,

также возрастает с ростом мощности и частоты вращения двигателей; при мощности более 1 кВт он составляет 0,7—0,9; в микродвигателях 0,3—0,7.

Торможение асинхронных двигателей

Торможение АД можно осуществить как при питании от сети переменного тока, так и путем включения в цепь статора источника постоянного тока. Кроме того, для подтормаживания Д используют режим самоторможения [9].

При включении АД по основной схеме может быть осуществлено торможение противовключением и рекуперативное торможение.

1. Торможение противовключением.

Рис. 5.13. Механические характеристики АД

при торможении противовключением

Этот режим можно осуществить двумя путями:

1) изменяя порядок чередования фаз. В этом случае направление вращения магнитного поля меняется на противоположное и Д с естественной характеристики 1 переходит на тормозную характеристику 2, расположенную во втором квадранте. В момент, когда частота вращения становится близкой к нулю, Д необходимо отключить от сети. В противном случае он реверсируется.

2) нагружая Д активным моментом, при введении в цепь ротора большого добавочного сопротивления. В этом случае вращающий момент нагрузки оказывается больше движущего момента Д. Поскольку они направлены в разные стороны, то Д переходит на работу по характеристике 3, и новое установившееся значение скорости будет соответствовать противоположному направлению вращения Д, то есть имеем спуск груза с подтормаживанием за счет включенного на подъем Д.

Читать еще:  Все о тюнинге двигателя оки

Рис. 5.14. Механические характеристики АД

при рекуперативном торможении

Рекуперативное торможение самое экономичное, поскольку Д включается параллельно с сетью и работает в режиме генератора, то есть энергия, затрачиваемая на торможение, возвращается обратно в сеть. Это торможение имеет место тогда, когда частота вращения выше синхронной. На практике этот метод широко используется в многоскоростных Д при переходе с большей скорости на меньшую, а также при уменьшении частоты питающего напряжения в системе преобразователь частоты — двигатель.

3. Динамическое торможение.

Рис. 5.15. Динамическое торможение АД: а) схема включения АД;

б) механические характеристики АД

Для осуществления этого режима обмотку статора отключают от сети и в две фазы статора подают постоянный ток. В результате ротор вращается в неподвижном магнитном поле. При этом цепь ротора может быть закорочена, либо в нее может быть введено . Возникает тормозной момент, который и тормозит двигатель. Электромеханическую характеристику Д в режиме динамического торможения можно получить из схемы замещения. Она располагается в первом квадранте (кривая 1), скольжение в режиме динамического торможения определяется как . Форма тормозной характеристики и величина тормозного момента зависят от схемы соединения обмоток. Кроме того, вид характеристики определяется величиной тормозного тока и, следовательно, сопротивлением потенциометра . При одном и том же значении можно получить различные характеристики (кривые 2 и 4). Следует иметь в виду, что момент будет пропорционален квадрату тока. При постоянном тормозном токе, изменяя , получим другое семейство характеристик (кривые 2 и 3).

Этот режим получил большое распространение.

Недостатком этого способа является уменьшение тормозного момента до нуля при снижении скорости до нуля.

4. Торможение АД при самовозбуждении.

Этот вид торможения основан на том, что после отключения АД от сети его электромагнитное поле затухает не мгновенно. Если использовать энергию этого затухающего поля, то можно обеспечить самовозбуждение Д и осуществить тормозной режим. На практике используют два способа торможения с самовозбуждением: конденсаторное и магнитное торможение.

Рис. 5.16. Конденсаторное торможение АД: а) схема включения АД;

б) механические характеристики АД

При конденсаторном торможении самовозбуждение осуществляется за счет включения в цепь статора конденсаторов. Причем конденсаторы могут подключаться постоянно (глухое включение) или при помощи контактора. Увеличение емкости конденсаторов приводит к смещению вниз и влево характеристик. При отключении двигателя накопленная в электрическом поле энергия самовозбуждает его, что приводит к появлению тормозного момента.

Рис. 5.17. Схема включения АД при магнитном торможении

Магнитное торможение. В настоящее время с использованием тиристорных коммутирующих устройств и тиристорных регуляторов напряжения широкое распространение получило магнитное торможение. Этот способ реализуется при отключении Д от сети и закорачивании обмоток статора контактором . При этом появляется электрическая цепь и за счет запасенной в Д электромагнитной энергии осуществляется самовозбуждение Д.

Особенностью этого способа является быстротечность, которая определяется небольшим временем затухания магнитного поля. Обычно этот режим осуществляется в сочетании с режимом динамического торможения. Такое комбинированное торможение реализуется с помощью тиристорных пускорегулирующих устройств.

Читать еще:  Вентилятор не работает карбюраторный двигатель

Рис. 5.18. Схема включения АД при комбинированном торможении

При отключении Д от сети тиристоры закрыты, сигнал подается на и он замыкает обмотку статора, осуществляя магнитное торможение. Спустя короткое время закрывается , открывается один из тиристоров коммутирующей группы , например . В результате в одну из обмоток статора подается выпрямительный ток и осуществляется динамическое торможение до остановки Д.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Торможение двигателей электронным и сверхсинхронным способом

Эффект электронного торможения достигается относительно просто с помощью регулятора скорости, оснащенного тормозным резистором.

Асинхронный двигатель действует как генератор. Механическая энергия рассеивается на ограничительном резисторе без увеличения потерь в самом двигателе.

Эффект торможения проявляется, когда двигатель достигает верхней точки синхронной скорости с переходом на более высокие значения.

Здесь фактически инициируется режим асинхронного генератора и развивается тормозной момент. Возникающие при этом потери энергии восстанавливаются электросетью.

Подобный режим работы проявляется на двигателях подъёмников при спуске груза с номинальной скоростью. Тормозной момент полностью уравновешивается крутящим моментом от нагрузки.

За счёт этого равновесия удаётся тормозить не ослаблением скорости, а выводом двигателя в режим работы на постоянной скорости.

Для варианта эксплуатации моторов с фазным ротором, все или часть резисторов ротора должны быть накоротко замкнутыми, чтобы двигатель не развивал движение значительно выше номинальной скорости.

Сверхсинхронная система функционально видится идеальной для ограничения движения под нагрузкой, потому что:

  1. Скорость остаётся стабильной и практически не зависит от вращающего момента,
  2. Энергия восстанавливается и возобновляется в сети.

Тем не менее, сверхсинхронное торможение электродвигателей поддерживает только одну скорость вращения, как правило, номинальное вращение.

На частотно-регулируемых двигателях используются сверхсинхронные схемы, благодаря которым изменяется скорость вращения вала от верхнего значения к нижнему значению.

Сверхсинхронное торможение легко достигается с помощью электронного регулятора скорости, который автоматически запускает эту систему при понижении частоты.

Другие тормозные системы

Редко, но всё-таки встречаются системы однофазного торможения. Эта методика включает питание двигателя между двумя фазами сети и подключает незанятый терминал к одному из двух других сетевых подключений.


Вариант остановки простым реверсивным переключением — реверс поля вращения, образованного обмотками статора

Тормозной момент ограничивается 1/3 максимального крутящего момента двигателя. Этой системой невозможно остановить мотор на полной нагрузке.

Поэтому такая схема традиционно дополняется противоточным методом. Вариант однофазной блокировки характеризуется значительным дисбалансом и высокими потерями.

Также применяется торможение электродвигателей ослаблением вихревых токов. Здесь работает принцип, аналогичный тому, что используется на промышленных транспортных средствах в дополнение к механическому торможению (электрические редукторы).

Механическая энергия рассеивается в редукторе скорости. Замедление и остановка электродвигателя контролируется простым возбуждением обмотки. Выраженный недостаток этого метода — значительное увеличение инерции.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector