Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Главный двигатель судна схема

Судовой двигатель

Судовая энергетическая установка — комплекс машин, механизмов, теплообменных аппаратов, источников энергии, устройств и трубопроводов — предназначенных для обеспечения движения судна, а также снабжения энергией различных его механизмов.

Судовая энергетическая установка — бортовой комплекс систем и агрегатов судна, преобразующий первичную энергии органического (химического) или атомного топлива в тепловую энергию, с последующим частичным преобразованием её: а) в механическую энергию — потребную для приведения в действие движителя судна и бортовых механических систем и устройств; б) в электрическую энергию — потребляемую различными бортовыми системами, устройствами и аппаратурой.

Судовая энергетическая установка обеспечивает: потребные скорость хода, дальность плавания и маневренность судна; потребное функционирование систем бортового оборудования и вооружения; необходимые условия для нормальной жизнедеятельности экипажа.

В состав энергетической установки входят:

  • ГЭУ — главная энергетическая установка (приводящая судно в движение и работающая на собственные нужды);
  • Вспомогательные механизмы — дизельные генераторы, котлы, компрессоры, опреснительные установки.

ГЭУ совместно с гребным двигателем, валопроводом и движителем образует пропульсивную установку.

Различают следующие виды ЭУ:

Судовые дизеля, дизельгенераторы

Дизельные двигатели для современных судов являются наиболее распространенным вариантом, потому что они экономичны, неприхотливы, не требуют сложного обслуживания.

Классификация судовых дизельных двигателей:

  • малооборотные – подходят для широкого круга кораблей, мощность таких двигателей различается в обширном диапазоне;
  • среднеоборотные – применяются на судах средних размеров, их мощность меньше, чем у малооборотных двигателей;
  • высокооборотные – устанавливаются на маломерных судах или в качестве вспомогательного двигателя на средних и крупных кораблях (см. МРК Шторм — ракетный корабль).

Судовые дизельгенераторы – это резервный источник энергии, обеспечивающий корабль электричеством в чрезвычайных ситуациях. По мощности и производительности генераторы разделяются на аварийные и вспомогательные.

  • вспомогательный дизельный двигатель;
  • силовой генератор;
  • блок автоматического или ручного управления.

Дизельные генераторы применяются на судах различного назначения морского и речного флота.

История

Первый коммерчески успешный паровой двигатель был разработан Томасом Ньюкоменом в 1712 году. Усовершенствования парового двигателя, внесенные Джеймсом Ваттом во второй половине 18-го века, значительно повысили эффективность парового двигателя и позволили сделать его более компактным. Успешная адаптация парового двигателя к морским применениям в Англии должна была подождать почти столетие после Ньюкомена, когда шотландский инженер Уильям Саймингтон построил в 1802 году «первый в мире практичный пароход » Charlotte Dundas . Соперничающие изобретатели Джеймс Рамси и Джон Фитч. были первыми, кто построил пароходы в США. Рамси выставил свой дизайн парохода в 1787 году на реке Потомак; однако Fitch выиграло соревнование в 1790 году после того, как его успешное испытание привело к созданию пассажирских перевозок на реке Делавэр. В 1807 году американец Роберт Фултон построил первый в мире коммерчески успешный пароход, известный просто как North River Steamboat , с двигателем Ватта.

После успеха Фултона технология пароходов быстро развивалась по обе стороны Атлантики . Первоначально пароходы имели малый радиус действия и не были особенно мореходными из-за своего веса, малой мощности и склонности к поломке, но они успешно использовались вдоль рек и каналов и для коротких путешествий вдоль побережья. Первый успешный трансатлантический переход на пароходе произошел в 1819 году, когда Саванна отплыла из Саванны, штат Джорджия, в Ливерпуль, Англия . Первым пароходом, совершавшим регулярные трансатлантические переходы, был колесный пароход Great Western в 1838 году.

В 19 веке морские паровые двигатели и пароходная техника развивались параллельно друг другу. Лопаточная силовая установка постепенно уступила место гребному винту , и введение железных, а затем и стальных корпусов вместо традиционного деревянного корпуса позволило кораблям расти еще больше, что потребовало паровых электростанций, которые становились все более сложными и мощными.

Паровые машины. Часть первая — двигатель.

Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию водяного пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразует энергию пара в механическую работу.

Изобретение паровых машин стало переломным моментом в истории человечества. Где-то на рубеже XVII-XVIII веков началась замена малоэффективного ручного труда, водяных колес и ветряных мельниц на совершенно новые и уникальные механизмы – паровые двигатели. Именно благодаря им стали возможны техническая и промышленная революции, да и весь последующий прогресс человечества.

Первые опыты использования пара в механике были предприняты еще на заре нашей эры Героном Александрийским. Его устройство представляло собой шар с двумя закрученными выходными трубками-соплами, выходя из которых пар приводил шар в движение. Машина получила название эолипил или «сфера Герона». Существует предположение, что сам Герон непричастен к созданию данного механизма – он лишь первый его описал в своем труде «Пневматика», а сами лавры изобретателя принадлежат Ктесибию Александрийскому, жившему на 300 лет ранее. Однако в любом случае устройство, в силу своей ненадобности, было забыто более чем на полторы тысячи лет.

Читать еще:  Двигатель wd615 как отрегулировать клапана

Позднее, уже в XVI веке, арабский философ и изобретатель Таги-аль-Диноме усовершенствовал машину Герона, заменив шар на колесо, приводимое в движение струей пара, направленной прямо на лопасти колеса. Нечто похоже предлагал позднее и итальянский инженер Джованни Бранка. Машина, именованная паровой турбиной, имела один очень большой недостаток – огромный расход пара, а соответственно и низкий коэффициент полезного действия. И снова дальнейшего развития работа над паровой машиной не получила – все еще не была ясна сфера применения данных исследований.

В 17 века были созданы ещё две модели: в Испании двигатель сконструировал Аянс де Бомонт, а в Англии Эдвард Сомерсет в 1663 году установил паровую установку для закачки воды в Большую башню замка Реглан. Но все проекты быстро сворачивались и забывались. Тогда, как впрочем, и сейчас все новое не воспринималось большинством, и деньги на разработку никто давать не решался.

И вот, наконец, к концу века французский врач Дени Папен изобрел первый паровой котел. В 1674 году медик-изобретатель создал пороховой двигатель. Его работа заключалась в том, что при возгорании пороха в цилиндре перемещался поршень. В цилиндре образовывался слабый вакуум, и атмосферное давление возвращало поршень на место. Образующиеся при этом газообразные элементы выходили через клапан, а оставшиеся охлаждались. К 1698 году Папену удалось создать по такому же принципу агрегат, работающий не на порохе, а на воде. Таким образом, первая паровая машина была создана. Несмотря на существенный прогресс, к которому могла привести идея, существенной выгоды она своему изобретателю не принесла. Связано это было с тем, что ранее другой механик, Сейвери, уже запатентовал паровой насос, а другого применения для подобных агрегатов к этому времени еще не придумали.

Конечно, Папена это не остановило. На свои последние сбережения потратил на приобретение небольшого судна, на котором занялся установкой водоподъемной пароатмосферной машины собственного производства. Механизм действия заключался в том, чтобы, падая с высоты, вода начинала вращать колеса.

Свои испытания изобретатель проводил в 1707 году на реке Фульде. Много народу собралось, чтобы посмотреть на чудо: двигающееся по реке судно без парусов и весел. Однако во время испытаний произошла катастрофа: взорвался двигатель и погибли несколько человек. Власти разозлились на неудачливого изобретателя и запретили ему какие-либо работы и проекты. Судно конфисковали и разрушили, а через несколько лет скончался и сам Папен.

Более удачливым в плане дивидендов оказался англичанин Ньюкомен. Когда Папен создал свою машину, Томасу было 35 лет. Он внимательно изучил работы Сэйвери и Папена и смог понять недостатки обеих конструкций. Из них он взял все лучшие идеи. Уже к 1712 году он создал свою первую модель.

Агрегат Ньюкомена поднимал воду из копей с помощью воздействия атмосферного давления. Машина отличалась солидными размерами и требовала для работы большого количества угля. Несмотря на эти недостатки, модель Ньюкомена использовали в шахтах полвека. Она даже позволила вновь открыть шахты, которые были заброшены из-за подтопления грунтовыми водами. В 1722 году детище Ньюкомена доказало свою эффективность, откачав воду из корабля в Кронштадте всего за две недели. Система с ветряной мельницей смогла бы сделать это за год. Из-за того, что машина была создана на основе ранних вариантов, английский механик не смог получить на нее патент. Конструкторы пытались применить изобретение для движения транспортного средства, но неудачно. На этом история изобретения паровых машин не прекратилась.

Годы шли. И промышленная революция накрывала все больше и больше стран. Первенство и лидерство среди других держав доставалось неизменно Англии. К концу восемнадцатого века именно Великобритания стала создательницей крупной промышленности, благодаря чему завоевала титул всемирной монополистки в данной отрасли. Вопрос о механическом двигателе с каждым днем становился все более актуальным. И такой двигатель был создан.

1784 год стал для Англии и для всего мира переломным моментом в промышленной революции. И человеком, ответственным за это, стал английский механик Джеймс Уатт. Паровая машина, которую он создал, стала самым громким открытием века.

Читать еще:  Шум работы двигателя ларгус

На основании предыдущих опытов работ по созданию пароатмосферных машин он сделал вывод, что для эффективности работы двигателя необходимо сравнять температуры воды в цилиндре и пара, который попадает в механизм. Новая паровая машина была сконструирована так, что цилиндр, заключенный в специальную рубашку из пара, постоянно находился в нагретом состоянии. Кроме того, Уатт так же создал специальный сосуд, погруженный в холодную воду – конденсатор. Когда пар отрабатывался в цилиндре, то через трубу попадал в конденсатор и там превращался обратно в воду.

Таким образом, весь пар, попадавший из цилиндра, конденсировался в нем. Благодаря этому нововведению очень сильно увеличивался процесс расширения пара, что в свою очередь позволяло извлекать из того же количества пара намного больше энергии.

Это был венец успеха. Создатель паровой машины также изменил и принцип подачи воздуха. Теперь пар попадал сначала под поршень, тем самым поднимая его, а затем собирался над поршнем, опуская. Таким образом, оба хода поршня в механизме стали рабочими, что ранее даже не представлялось возможным. А расход угля на одну лошадиную силу был в четыре раза меньше, чем, соответственно, у пароатмосферных машин, чего и добивался Джеймс Уатт. Паровая машина очень быстро завоевала сначала Великобританию, ну а затем и целый мир.

Судовые двигатели и электрооборудование маломерных судов

Двигатель внутреннего сгорания (ДВС) — тепловой двигатель, в котором сгорание приготовленной горючей смеси и преобразование выделенной при этом теплоты в механическую работу происходит внутри замкнутой рабочей полости (в цилиндре) двигателя. Первый ДВС был сконструирован в 1860 году французским изобретателем Э.Ленуаром. Сведения о двигателях и ПЛМ. разрабатываемых за рубежом, приводятся лишь для сведения или как представляющие интерес с точки зрения технических решений рассматриваемой проблемы. Двигатели внутреннего сгорания условно классифицируются по месту установки, конструктивным и иным признакам. Так, по способу установки на маломерном судне они подразделяются на стационарные двигатели (на катерах) и подвесные лодочные моторы (на мотолодках). В поршневых ДВС сгорание топлива и превращение тепловой энергии в механическую совершается внутри цилиндра.

Классификация двигателей внутреннего сгорания

Привлекают большое внимание конструкторов роторные двигатели (Ванкеля), которые по способу преобразования энергии явпяются поршневыми (РПД), но вместо поступательного движения поршней применяется вращающийся в корпусе с внутренней рабочей поверхностью в виде цилиндрической эпитрохоиды трехгранный ротор, выполняющий функции поршня. Поскольку роторный двигатель находит применение на маломерных судах в настоящее время и может найти в перспективе — есть необходимость рассмотреть принцип его работы ( рис. 72 ).

Преимущества и недостатки двигателей

Несколько слов о преимуществах и недостатках тех или иных двигателей. Преимущества карбюраторного двигателя: при одинаковой мощности вес в 2 раза меньше облегченного быстроходного дизеля, обладает меньшей шумностью и вибрацией, дешевле в пр» обретении, всегда обеспечен запчастями из-за повсеместного применения. Недостаток один топливо — бензин — огне и взрывоопасен, значительно дороже дизельного топлива и двигатель ев расходует в среднем на 40% больше.

Двигатели внутреннего сгорания применяемые на маломерных судах

Основными двигателями внутреннего сгорания , применяемыми в качестве силовых установок на большинстве маломерных судов являются стационарные и подвесные, двух и четырехтактные поршневые карбюраторные ДВС. Устройство большей части узлов, систем и механизмов стационарного четырехтактного карбюраторного двигателя и двухтактного подвесного лодочного мотора рассматривается в примерах малолитражного двигателя М — 412 и ПЛМ «Вихрь» (без модификаций), с учетом того, что у всех двигателей устройство основных узлов принципиально аналогично и они отличаются только некоторыми конструктивными решениями.

В настоящее время существует пять типов механической установки, применяемой на маломерных судах:

В качестве стационарных двигателей в большинстве отечественных катеров применяются автомобильные двигатели общего назначения ( рис. 75 ). конвертированные (от лат. converto — изменять) в судовые . При конвертации коробка передач заменяется реверсивно-редукторной муфтой (реверс — редуктором), устройством, которое служит для изменениям направления вращения гребного вала (передни задний ход), уменьшения частоты вращения гребного вала. В системы охлаждения и смазки двигателя вводятся дополнительно водоводяной и водомасляный радиаторы (холодильники) с целью более эффективного выполнения этими системами своих функций. Одевается в рубашку водяного охлаждения выхлопной коллектор. Для подачи забортной воды в указанные системы и на охлаждение коллектора устанавливается насос забортной воды с фильтром, воздушный фильтр заменяется сетчатым пламегасителем, устанавливается датчик тахометра для измерения частоты вращения коленчатого вала, меняется способ крепления двигателя.

Читать еще:  Buildcraft как повернуть двигатель

Рис. 75. Двигатель М — 412 Э. 1 — крышка головки цилиндров; 2 — ось коромысел; 3 — распределительный вал; 4 — карбюратор; 5 — впускной трубопровод; 6 — блок цилиндров; 7 — масляный картер; 8 — выпускной трубопровод; 9 — головка блока

Силовая установка

Силовая установка BB Green проста. Аккумуляторные батареи питают инвертер, к которому подключены электродвигатели, вращающие винты. На расчетной скорости (30 узлов) два электрических двигателя с постоянными магнитами потребляет около 550 кВт. Еще 50 кВт используется системой подъемного вентилятора.

Не смотря на простоту схемы, оригинальный дизайн корпуса потребовал нестандартных винтов и как следствие нестандартной силовой установки. Воздушная подушка приподнимает судно и засасывает воздух, который уменьшает КПД. Поэтому BB Green оснастили установкой Volvo Penta IPS, которую сконфигурированной для работы с электродвигателями.

Направленные вперед сдвоенные винты, вращаются в противоположных направлениях, отлично захватывают воду и быстро ускоряют судно. Гондолы двигателей управляются джойстиком, судно отзывчиво на команды и легко маневрирует.

Система запуска судового двигателя. Выхлопные газы.

Система запуска судового двигателя. Выхлопные газы.

Система запуска судового двигателя

Для того чтобы запустить двигатель внутреннего сгорания, как известно, его надо несколько раз провернуть, чтобы цилиндры заполнились рабочей смесью, она сжалась и воспламенилась, толкая поршни. Рукоятка, которой заводились старые советские автомобили, для двигателя размеров с дом не подойдёт, нужно что-то помощнее. На судах для этого традиционно используется сжатый воздух, хранящийся в баллонах под давлением 30 бар.

При этом главные двигатели малой мощности или вспомогательные двигатели могут заводиться с помощью электрических или пневматических стартовых моторов, работающих от аккумуляторов или сжатого воздуха. Для этого должна быть предусмотрена система зарядки аккумуляторных батарей, или компрессор для закачки воздуха в баллоны при работающем двигателе. Такой стартовый мотор прокручивает двигатель за зубчатый маховик, пока он не заведётся.

Когда двигатель заводится от сжатого воздуха, он подаётся в цилиндры через работающий от распредвала отдельный распределитель с клапанами, в том же порядке, как и при работе двигателя. Когда двигатель проворачивается, впрыскивается топливо и подача воздуха прекращается.

Для старта обычно достаточно 10 бар. Тем не менее, в баллонах обязательно должно быть давление в 30 бар, чтобы при необходимости завести мотор несколько раз.

Выхлопные газы

По составу выхлопные газы – это очень горячая смесь углекислого газа, водяного пара, несгоревшего топлива и смазки, оксида азота (продукт окисления атмосферного азота), диоксида серы (образуется при сгорании содержащейся в топливе серы) и углерода в виде сажи. Оксид серы реагирует с водой, образую серную кислоту, которая разъедает сталь выхлопных труб судна. Настройкой рабочего цикла двигателя получается в определенных пределах уменьшить количество вредных для экологии оксидов азота и серы.

В некоторых морских районах действует ограничение на использование судами тяжелого топлива с высоким содержанием серы (1.5% вместо обычных 3.5%), чтобы уменьшить выбросы оксида серы в атмосферу. Судно бывает вынуждено перейти на более «чистое» дизельное топливо. Также существуют системы фильтров, уменьшающих выброс оксидов азота, но они достаточно дороги.

Тепло от выхлопных газов можно утилизировать, например, для подогрева топлива, нагрева воды или отопления помещений судна. Иначе оно будет буквально выброшено на воздух. Эту функцию выполняют специальные теплообменники на выхлопных трубах, называемые экономайзерами.

Выхлопные газы могут нагревать специальное масло-теплоноситель, или производить водяной пар для судовых нужд, обычно для разогрева тяжелого топлива.

Несмотря на наличие таких «бесплатных» источников тепла, на корабле всё равно должны быть независимые от работы главного двигателя нагреватели, обеспечивающие отопление и другие нужды судна при стоянке в порту, или когда главный двигатель не работает на полную мощность.

Воздух для горения топлива на судне

Для сгорания топлива в цилиндрах необходим воздух. Он поступает из машинного отделения, при этом туда при помощи вентиляторов подаётся наружный свежий воздух, охлаждая помещение. Но всё равно там очень жарко. Поэтому во флоте ценятся русские мотористы и механики, закалённые паровой русской баней.

В цилиндры воздух подаётся с некоторым избытком, чтобы улучшить процесс горения и снизить температуру выхлопных газов.

Подача воздуха для горения под давлением может резко поднять мощность двигателя, поэтому часто используется турбина с теплообменником. В ней кинетическая энергия выхлопных газов используется для предварительного сжатия воздуха, который после охлаждения поступает в цилиндры.

Вот так воздух в разных видах используется в судовых энергетических установках.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector