Mio-tech-service.ru

Автомобильный журнал
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Hdd двигатель как генератор

Поделки из нерабочих HDD — мини-помпа

Понадобилась мне как-то для будущих самоделок водяная помпа. Да не простая — с ограничениями по габаритам — толщина до 25мм, ширина до 50мм (длина — уже можно варьировать). Из желаемых характеристик — напор 1м и расход 100л/ч. Не найдя в продажах желаемого (в основном — по габаритам), по своей упоротойупорной натуре приступил к реализации своего решения данного вопроса!

Внимание — много фото!

«Мозги» и немного предыстории:

Строго говоря, идея использовать для помп моторчики HDD не нова. C 2009 года ведётся целая ветка на одном известном форуме. Так что изначально был нацелен на изготовление помпы из «ноутбучного» жёсткого диска и поиска подходящего драйвера c интегрированными силовыми ключами и бессенсорным управлением.

Но «из коробки» перенять опыт мне не удалось. Череда тестов с разными драйверами (MTD6501C, DRV11873 и ряда прочих китайских поделок) давали неутешительный итог: более крупные моторы от 3.5 дисков работают идеально. А вот с мелкими моторами в лучшем случае удается запустить единицы, и те работают крайне нестабильно. С таким неутешительным результатом давняя идея была заброшена и находилась на грани забвения.

Но относительно недавно наткнулся на довольно любопытный драйвер от TI — DRV10987. При своих скромных габаритах обладает довольно внушительным потенциалом:

  • Рабочее напряжение от 6v до 28v
  • Интегрированный понижающий преобразователь на 5v (можно запитать МК для управления)
  • Постоянный рабочий ток до 2А (пиковый — 3А)
  • Огромное число программно определяемых параметров (задание значений конфигурационных регистров по шине I2C) для управления работой мотора
  • Автоматический перезапуск мотора после аварийной остановки / сбое (если условия возникновения сбоя прошли)
  • Защита от перегрузки по току
  • Защита от перенапряжения
  • Детектирование остановки/блокировки ротора
  • Отключение при перегреве контроллера

Вооружившись ардуинкой (да простят меня за это ругательное слово местные электронщики) для задания параметров, изготовленной ЛУТом платой под данный драйвер, углубился в опыты по запуску моторчиков. Что же, данный контроллер меня не разочаровал! Несмотря на примененный метод «научного тыка» при подборе параметров, удалось найти подход к любому мотору от HDD!

Помог мне в этом самописный онлайн-конфигуратор настроек. Пользуйтесь на здоровье!)

Затем уже были заказаны в поднебесной более презентабельные платки:

После регистрации (ну вот так требуют) можете бесплатно скачать файлы проекта. Или сразу же заказать платы здесь.

О «пересадке сердца»

Осталось дело за малым — достать из корпуса HDD мотор, который кстати говоря, в 2.5 дисках (и в большинстве 3.5) является его неотъемлемой частью. Вкратце можно процесс описать известной фразой «Пилите, Шура, пилите!«:


Из фанеры изготавливается внешняя направляющая под коронку по металлу с креплением к корпусу диска. Для сохранности шлейф мотора приклеивается к его основанию, чтобы не был срезан коронкой


После высверливания получаем кругляшки с моторчиком. После обработки напильником получаем диаметр основания около 25мм.

Подготовка реципиента к трансплантации:

Мозги и сердце будущей помпы отлично ладят друг с другом и готовы обрести новое место обитания. Так что самое время подумать о корпусе и крыльчатке.

Так как нужно получить при малом рабочем объеме высокое давление, крыльчатку спроектировал с 7 лучами:


Печать на 3D принтере поликарбонатом
3D модель

Поликарбонат — вещь для корпуса отличная. Но печатать целый корпус им дорого. Куски толстых листов очень трудно найти да и фрезеровка не бесплатна (для меня). Зато у рекламщиков за спасибо можно выпросить обрезки от листов толщиной 4мм и 2мм. Так что корпус проектировался для последующего нарезания лазером деталей и их склейкой в единое целое без необходимости фрезеровки. Потребуется разве что высверливание отверстий под фитинги и гайки.


Вид 3D модели
3D модель


Набор деталей для склейки «топа» помпы. В местах сопряжения каналов притока и оттока срезаны грани

Ход операции:

Тут хотелось бы сделать лирическое отступление и напомнить желающим повторить и не только, что дихлорэтан, которым проводилась склейка — содержит мало витаминов и вдыхать нужно больше довольно токсичное и летучее вещество. Работы с ним нужно проводить или на открытом воздухе или в хорошо вентилируемом помещении.


Стек деталей «топа» на сушке после склейки — верх-приток-сепаратор-крыльчатка-ротор. Аналогично склеивается основание для мотора (или изготовить из 6мм куска поликарбоната целиком)


После склейки высверливаются отверстия для фитинга — 8мм латунной трубки по насечкам на детали «сепаратор»


Старый добрый состав БФ-4 как по мне дает надежную склейку латуни и поликарбоната


Тем же клеем приклеивается основание мотора в нижней части помпы. В верхней части рассверливаются (не насквозь!) отверстия под вклейку гаек-заклепок М3. И на фото видна прокладка из тонкого силикона

Тестирование:

Вот и пришла пора проверить в работе самоделку. Для этого был наскоро собран тестовый стенд. Так как Хабр читают дети серьезные разработчики, у которых внешний вид и состав стенда может вызвать приступы паники, ужаса и дезориентации, хотел его спрятать под спойлер… но надеюсь, всё обойдётся, и потом не говорите, что я вас, уважаемые читатели, не предупреждал!


Ардуинка подаёт управляющий сигнал PWM, коэффициент заполнения которого задается вручную переменным резистором, считывает значение конфигурационных регистров, а так же определяет скорость вращения как через внутренние регистры драйвера (RPMrg), так и по сигналу FG (RPMfg). Питание мотора — 12v

Запуск мотора без нагрузки. Регулировка оборотов и замер энергопотребления

Мотор успешно стартует от 6% управляющего PWM сигнала. А в конце видео видно, как на высоких оборотах значения скорости во внутреннем регистре «подвисают» на интервале от 10к до 13к оборотов, хотя через выход FG частота фиксируется без изменений.

С холостым ходом всё понятно — получили 13к оборотов при напряжении 12v и потреблении 0.16A. Но собиралась водяная помпа, а я тут воздух гоняю. Так что следующий этап — сопровождение домочадцев на улицу, дабы не мешались, и оккупация ванной комнаты!

Читать еще:  Volvo 850 какой двигатель лучше


Делать замеры и снимать видео у меня, увы, не получилось. Так что обойдемся фото общего плана. К измерительному оборудованию добавились секундомер и банка на 3л


По итогам замеров получилась вот такая таблица


График расхода

Как итог — данная поделка целиком удовлетворяет моим требованиям. А в случае поломки, благодаря разборной конструкции и наличию в любых ремонтных мастерских / сервисных центрах ящиков с дохлыми 2.5HDD — починить не составит труда. И путь к дальнейшему построению СВО открыт! Так что продолжение следует!

Запуск старых HDD для прикладных применений

При использовании старых HDD приводов в прикладных целях иногда возникает проблема с тем, что шпиндельный двигатель останавливается через некоторое время после запуска. Есть у них такая «фишка» — если с блока головок не поступают сигналы на микросхему-контроллер, то она запрещает микросхеме-драйверу вращать двигатель. На примере несколько моделей приводов попробуем разобраться, как это исправить.

Всё началось с того, что привезли несколько старых винчестеров (рис.1) и сказали, что здесь рабочие вперемешку с «убитыми», хочешь – выбирай, не хочешь – делай что хочешь. Но если разберёшься, как их использовать в качестве небольшого наждака для правки инструмента, расскажи. Ну, вот – рассказываю…

Первый HDD – «Quantum» семейства «Fireball TM» с микросхемой привода TDA5147AK (рис.2). Посмотрим, что он из себя представляет.

Верхняя крышка крепится 4-мя винтами по углам и одним винтом и гайкой, находящимися сверху, под наклейками. После снятия крышки видны сам жёсткий диск, считывающие головки и магнитная система управления положением головок (рис.3). Шлейф отсоединяем, магнитную систему откручиваем (здесь понадобиться специально заточенный шестигранный ключ «звёздочка»). При желании диск тоже можно снять, если открутить три винта на шпинделе двигателя (также нужен шестигранник).

Теперь ставим крышку на место для того, чтобы можно было перевернуть HDD для экспериментов с электроникой и подаём в разъём питания напряжения +5 В и +12В. Двигатель разгоняется, работает примерно 30 секунд, а затем останавливается (на печатной плате есть зелёный светодиод – он горит при вращении двигателя и мигает при его остановке).

В сети легко находится даташит на микросхему TDA5147K, но по нему не удалось разобраться с сигналом разрешения/запрета вращения. При «подтягивании» сигналов POR к шинам питания добиться нужной реакции не удалось, но при просмотре сигналов осциллографом выяснилось, что при касании щупом 7-го вывода микросхемы TDA5147АK происходит её сброс и перезапуск двигателя. Таким образом, собрав простейший генератор коротких импульсов (рис.4, нижнее фото) с периодом в несколько секунд (или десятков секунд), можно заставить двигатель вращаться более-менее постоянно. Возникающие паузы в подаче питания длятся около 0,5 секунды и это не критично, если двигатель используется с небольшой нагрузкой на валу, но в других случаях это может быть неприемлемо. Поэтому, способ хоть и действенный, но не совсем правильный. А «правильно» запустить его так и не удалось.

Следующий HDD – «Quantum» семейства «Trailblazer» (рис.5).

При подаче напряжений питания привод никаких признаков жизни не подаёт и на плате электроники начинает сильно греться микросхема 14-107540-03. В середине корпуса микросхемы заметна выпуклость (рис.6), что говорит о её явной неработоспособности. Обидно, но не страшно.

Смотрим микросхему управления вращением двигателя (рис.7) — HA13555. Она при подаче питания не греется и видимых повреждений на ней нет. Прозвонка тестером элементов «обвязки» ничего особенного не выявила – остаётся только разобраться со схемой «включения».

Поисковики даташит на неё не находят, но есть описание на HA13561F. Она выполнена в таком же корпусе, совпадает по ножкам питания и по «выходным» выводам с HA13555 (у последней к проводникам питания двигателя подпаяны диоды – защита от противо-ЭДС). Попробуем определиться с необходимыми выводами управления. Из даташита на HA13561F (рис.8) следует, что на вывод 42 (CLOCK) должна подаваться тактовая частота 5 МГц с уровнем TTL-логики и что сигналом, разрешающим запуск двигателя, является высокий уровень на выводе 44 (SPNENAB).

Так как микросхема 14-107540-03 нерабочая, то отрезаем питание +5 В от неё и от всех остальных микросхем, кроме HA13555 (рис.9). Тестером проверяем правильность «порезов» по отсутствию соединений.

На нижнем фото рисунка 9 красными точками показаны места подпайки напряжения +5 В для HA13555 и резистора «подтяжки к плюсу» её 44 вывода. Если же резистор от вывода 45 снять с родного места (это R105 по рисунку 8) и поставить его вертикально с некоторым наклоном к микросхеме, то дополнительный резистор для подтяжки к «плюсу» вывода 44 можно припаять к переходному отверстию и к висящему выводу первого резистора (рис.10) и тогда питание +5 В можно подавать в место их соединения.

На обратной стороне платы следует перерезать дорожки, как показано на рисунке 11. Это «бывшие» сигналы, приходящие от сгоревшей микросхемы 14-107540-03 и старая «подтяжка» резистора R105.

Организовать подачу «новых» тактовых сигналов на вывод 42 (CLOCK) можно с помощью дополнительного внешнего генератора, собранного на любой подходящей микросхеме. В данном случае была использована К555ЛН1 и получившаяся схема показана на рисунке 12.

После «прокидывания» проводом МГТФ напряжения питания +5 В прямо от разъёма к выводу 36 (Vss) и других требуемых соединений (рис.13), привод запускается и работает безостановочно. Естественно, если бы микросхема 14-107540-03 была исправна, вся доработка заключалась бы только в «перетяжке» 44-го вывода к шине +5 В.

На этом «винте» была проверена его работоспособность при других тактовых частотах. Сигнал подавался с внешнего генератора прямоугольных импульсов и минимальная частота, с которой привод работал устойчиво — 2,4 МГц. На более низких частотах циклично происходил разгон и остановка. Максимальная частота – около 7,6 МГц, при дальнейшем её увеличении количество оборотов оставалось прежним.

Читать еще:  Электрореактивный двигатель принцип работы

Количество оборотов также зависит и от уровня напряжения на выводе 41 (CNTSEL). В даташите на микросхему HA13561F есть таблица и она соответствует значениям, получаемым у HA13555. В результате всех манипуляций удалось получить минимальную скорость вращения двигателя около 1800 об/мин, максимальную – 6864 об/мин. Контроль проводился с помощью программы SpectraPLUS, оптопары с усилителем и кусочка изоленты, приклеенного к диску так, чтобы он при вращении диска перекрывал окно оптопары (в окне анализатора спектра определялась частота следования импульсов и затем умножалась на 60).

Третий привод – «SAMSUNG WN310820A».

При подаче питания микросхема-драйвер – HA13561 начинает сильно греться, двигатель не вращается. На корпусе микросхемы заметна выпуклость (рис.14), как и в предыдущем случае. Проводить какие-либо эксперименты не получится, но можно попробовать запитать двигатель от платы с микросхемой HA13555. Длинные тонкие проводники были подпаяны к шлейфу двигателя и к выходным контактам разъёма платы электроники – всё запустилось и работало без проблем. Если бы HA13561 была целой, доработка для запуска была бы такой же, как и для «Quantum Trailblazer» (44-й вывод к шине +5 В).

Четвёртый привод — «Quantum» семейства «Fireball SE» с микросхемой привода AN8426FBP (рис.15).

Если отключить шлейф блока головок и подать питание на HDD, то двигатель набирает обороты и, естественно, через некоторое время останавливается. Даташит на микросхему AN8426FBP есть в сети и по нему можно разобраться, что за запуск отвечает вывод 44 (SIPWM) (рис.16). И если теперь перерезать дорожку, идущую от микросхемы 14-108417-02 и «подтянуть» вывод 44 через резистор 4,7 кОм к шине +5 В, то двигатель не будет останавливается.

И напоследок, вернувшись немного назад, были сняты формы сигналов на выводах W и V микросхемы HA13555 относительно общего провода (рис. 17).

Самое простое прикладное применение старого HDD – небольшой наждак для правки свёрл, ножей, отвёрток (рис.18). Для этого достаточно наклеить на магнитный диск наждачную бумагу. Если «винт» был с несколькими «блинами», то можно сделать сменные диски разной зернистости. И здесь хорошо бы иметь возможность переключения скорости вращения шпиндельного двигателя, так как при большом количестве оборотов очень легко перегреть затачиваемую поверхность.

Наждак, конечно, не единственное применение для старого HDD. В сети легко находятся конструкции пылесосов и даже аппарата для приготовления сладкой ваты…

В дополнении к тексту находятся упомянутые даташиты и файлы печатных плат внешних генераторов импульсов в формате программы Sprint-Layout 5-ой версии (вид со стороны печати, микросхемы устанавливаются как smd, т.е. без сверловки отверстий).

Андрей Гольцов, r9o-11, г. Искитим, апрель 2018.

Типы мотор-колес

Мотор-колеса бывают редукторными и прямоприводными. Для использования в качестве генератора электрического тока для ветряка подходят только модели прямого привода. Они не только более надежны и дольше служат благодаря максимально простой конструкции, но и обеспечивают возможность рекуперации энергии. К тому же, отсутствие шестеренок на прямоприводном электродвигателе снижает механические потери.

По весу и мощности МК прямого привода делятся на 3 категории:

  1. Модели массой 4,5–6 кг с номинальной мощностью 600–1000 Вт и КПД около 85%.
  2. Устройства массой 8–10 кг с номинальной мощностью 1,5–2 кВт.
  3. «Тяжеловесы» массой до 24 кг и мощностью до 8 кВт.

Для получения хорошего инерционного эффекта используемое в качестве генератора мотор-колесо должно быть тяжелым. Для получения мощного ветряка подойдет МК на 1000 Вт и 48 В. Универсальную модель можно собрать из МК на 800 Вт, а компактный вариант – на основе ступичного электромотора мощностью 500 Вт.

Управление мотором от жёсткого диска

Как запустить моторчик из HDD (жёсткого диска)? Многие задаются этим вопросом, и я решил помочь с ответом. На этой странице вы найдёте ссылки на китайские драйверы для управления бесколлекторными (BLDC) моторами, а также на некоторые мощные китайские моторы и драйверы для них!

ГОТОВЫЕ ДРАЙВЕРЫ ДЛЯ BLDC

Под 3 проводной мотор, до 15 Вольт, 1.2 А пик

Под 3-4 проводной мотор, до 18 Вольт, 30 Ватт. Регулировка вынесена

СРЕДНИЙ 15 Вт

Под 3-4 проводной мотор, до 12 Вольт, 1.5 А пик

БОЛЬШОЙ 350 Вт

Мощный драйвер до 36 Вольт, ток до 15 Ампер. Регулировка вынесена. Этим драйвером можно крутить большие модельные движки!

МОДЕЛЬНЫЕ РЕГУЛЯТОРЫ ОБОРОТОВ (ESC)

СЕРВОТЕСТЕР

70 А (100 А пик)

Напряжение 2-7 S (7.4 – 30 Вольт)

30/50/80/100/200 А

Напряжение 2-7S (7.4-30 Вольт)

Напряжение 2-3S (7.4-12 Вольт)

Напряжение 3S (12 Вольт)

DC БЕСКОЛЛЕКТОРНЫЕ ДВИГАТЕЛИ

ГОТОВЫЙ КИТ ДЛЯ СТАНКА

500 Ватт, 12 тыс. об/мин.

1600 Ватт, 50 тыс. об/мин. (1600 оборот/Вольт), напряжение 7S (30 Вольт), шпиндель 5 мм

1800 Ватт, 9 тыс. об/мин. (270 оборот/Вольт), напряжение 3-8S (12-34 Вольт), шпиндель 8 мм

ПОВЫШАЮЩИЕ ПРЕОБРАЗОВАТЕЛИ

До 24 Вольт, 2 Ампера максимум

До 32 Вольт, 3 Ампера максимум

До 35 Вольт, 100W без охлаждения, 150W с охлаждением

Напряжение до 18 Вольт, ток до 2 Ампер.

Применение HDD Regenerator

HDD Regenerator – это очень простое в освоении и использовании приложение, предназначенное для восстановления сбойных секторов жестких дисков и регенерации поверхности. Особой гордостью разработчиков пользуется специальный алгоритм перемагничивания поверхности, на основании которого и работает программа.
Приложение примечательно своими простым интерфейсом и способом управления – здесь нет сложных настроек, многоуровневых меню и переключателей, команды для запуска просты и понятны даже начинающему пользователю.

В действительности, список функций и достоинств HDD Regenerator довольно широк. Не будем углубляться в перечисление всех преимуществ приложения, а перейдем к основным способам применения, которые используются широким кругом пользователей.

Читать еще:  Шевроле лачетти какие двигатели установлены

Итак, в большинстве случаев программа применяется:

  • Для осуществления быстрой диагностики жесткого диска и выявления ошибок, а также поврежденных секторов (BAD-block);
  • Для глубокого сканирования и обнаружения всех возможных проблем с поверхностью НЖМД, а также их устранения в автоматическом режиме;
  • Для полной регенерации поверхности с использованием специального алгоритма перемагничивания.

Кроме разнообразия функций, разработчики заложили в программу несколько способов запуска, — HDD Regenerator работает на физическом уровне, поэтому не зависим от типа и версии операционной системы. Запуск и работа возможны в Windows-среде (поддерживаются ХР,Vista, 7,8,10), а при загрузке с USB-Flash или компакт-диска — в DOS-режиме. Остановимся на этом подробнее.

С чего начать?

Исходя из величины требуемых нагрузок для одновременного включения приборов, подбирают все основные элементы.

Оптимальные показатели рабочих характеристик достигаются правильным подбором мощностей бензинового и электрического двигателей.

Для получения однофазного тока 220 В подойдет двухтактный бензиновый двигатель, а если планируется получение более высоких мощностей, то выбор следует остановить на четырехтактном. Расход топлива будет зависеть от выбранного двигателя. Помимо основной задачи – выработки энергии, следует предусмотреть систему шумоподавления, смазки, вентиляции, установку выхлопной трубы для отвода газов. Придется купить колеса, чтобы обеспечить мобильность аппарата. Кожух можно изготовить из металла или фанеры.

Бензогенератор на основе двухтактного бензинового двигателя выручит при необходимости краткосрочного подключения. Когда требуется работа надолго и с большой нагрузкой, лучше изготовить генератор с четырехтактным бензиновым двигателем.

Панель управления должна иметь вольтметр, кнопку прерывания цепи, клеммы для подключения заземления, розетки для использования выработанной энергии.

Заниматься самостоятельным изготовлением бензогенератора имеет смысл в том случае, когда у вас имеются неиспользуемые двигатели от старых приборов. Можно, конечно, купить все составляющие специально для этих целей, однако большой экономии получить при этом не удастся – стоимость комплектующих может даже превысить цену готовой заводской модели.

На практике часто используют мотоциклетные или автомобильные движки, двигатели от косилок, бензопил и прочих устройств.

Генератор с двигателем от а/м Волга 21

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм 2 , наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:

  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:

  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector