Ipm двигатель что это
Компактный интеллектуальный силовой модуль для частотно-регулируемых приводов малой мощности
Частотно-регулируемые приводы малой мощности широко используются, например, в бытовых и промышленных кондиционерах. Для ускорения вывода этих изделий на рынок, уменьшения габаритов и упрощения теплоотвода Infineon предлагает новый силовой модуль, объединяющий в одном корпусе повышающий корректор коэффициента мощности (ККМ), инвертор и драйвер затворов.
Интеллектуальный силовой модуль IPM (Intelligent Power Module) объединяет силовые каскады корректора коэффициента мощности (ККМ) и инвертора. Модуль IPM оптимизирован для работы с частотно-регулируемыми приводами малой мощности. В корпусе с двурядным расположением выводов, выполненном по технологии трансферного прессования, размещены трехфазный инвертор и одноканальный повышающий ККМ, а также драйвер затворов, изготовленный по технологии «кремний на изоляторе» (SOI). Применение модуля IPM позволяет существенно снизить габаритные размеры и стоимость системы управления электродвигателем.
Частотный преобразователь для электродвигателя с постоянными магнитами. Основные принципы частотного регулирования синхронных двигателей
Как следует из названия, в данном типе двигателей (PM motor) для создания поля возбуждения используются магнитный материалы. При взаимодействии постоянного магнитного поля в роторе с вращающимся полем статора и создается электромагнитный момент. Асинхронные двигатели (IM) отличаются тем, что в них для создания поля возбуждения требуется ток намагничивания (составляющяя часть тока статора). Это фундаментальное отличие и дает основные преимущества двигателям с постоянными магнитами с точки зрения упрощения конструкции, снижения потерь и уменьшения размеров.
Благодаря использованию редкоземельных магнитов, синхронные двигатели обладают повышенной удельной мощностью (отношение выходной мощности двигателя к его массе) по отношению к эквивалентным асинхронным моторам.
Потери в синхронном двигателе обычно составляют 50%
70% от типового асинхронного двигателя той же мощности, что обуславливает более высокий КПД синхронных машин. Благодаря этому, PM технология удовлетворяет самым строгим стандартам энергоэффективности (IE3 и IE4+).
Типы двигателей с постоянными магнитами
PM машины можно разделить на 2 основные группы в зависимости от характеристик их возбуждения: 1) синхронные двигатели переменного тока (PMAC или СДПТ) с синусоидальным распределением магнитного потока и 2) бесщеточные двигатели постоянного тока (BLDC или БДПТ) с трапециевидным распределением потока. Разница в возбуждении является результатом различного расположения обмоток статора: в PMAC — обмотка распределенная, а в BLDC — концентрированная.
БДПТ дешевле, менее сложны в изготовлении и имеют несколько более высокую удельную мощность, чем СДПТ. Однако, у них есть пульсации момента в отличие от синхронных двигателей. Это одна из основных причин, почему СДПТ, как правило, предпочтительнее для высокопроизводительных применений.
Синхронные двигатели с дополнительной короткозамкнутой обмоткой ротора (LSPM) — по сути сочетание технологии синхронного и асинхронного двигателя. Такая конструкция позволяет LSPM двигателям запускаться в асинхронном режиме при питании напрямую от сети без частотного преобразователя и датчика положения/скорости. После разгона ротора до частоты вращения, близкой к синхронной, постоянный ток, проходящий по обмотке возбуждения, создает синхронизирующий момент, который втягивает ротор в синхронизм. LSPM машины часто встречаются в текстильной промышленности, где требуется синхронность работы ряда машин. Они также находят применение в отраслях, где требуется прямой пуск и высокоэффективная работа двигателя.
Основные требования к управлению
За исключением LSPM двигателей, которые могут быть подключен непосредственно к трехфазной электрической сети, для PMAC и BLDC двигателей требуется преобразователь частоты с достаточно сложным алгоритмом управления скоростью и моментом двигателя.
Управление синхронным двигателем более сложная задача, чем у асинхронного в связи с тем, что фактическое положение ротора должно непрерывно измеряться (или рассчитываться), чтобы двигатель не выпадал из синхронизма. Это можно сделать с помощью таких датчиков, как энкодер, резольвер, датчик Холла (BLDC), а также с помощью передовых методов бездатчикового векторного управления.
Новейшие технологии бездатчикового управления
В течение последних нескольких лет наблюдается повышенный интерес к исследованиям и разработке алгоритмов, устраняющих необходимость использования физического датчика положения/скорости при управлении синхронным двигателем. Сниженные затраты на установку и повышенная надежность являются основными преимуществами, связанными с отказом от этого датчика.
В большинстве современных бездатчиковых технологий управления двигателем в качестве обратной связи по положению ротора используется обратная или противо- ЭДС (back-emf), позволяя синхронному двигателю динамично и точно работать на средних и высоких оборотах (обычно > 2,5% от номинальных). Основным требованием для такого подхода является то, что напряжение, генерируемое постоянными магнитами, должно быть достаточно высоко, чтобы быть обнаруженным частотным преобразователем с необходимым разрешением. Проблемой такого метода является невозможность работы привода на скоростях, близких к нулю, так как противо-ЭДС не дает в этом случае требуемого сигнала.
Для преодоления данного ограничения был разработан метод инжекции сигналов — трансформации синхронного двигателя в резольвер, определяющий положение ротора. Эти сигналы накладываются на сигнал ШИМ преобразователя частоты. Для извлечение необходимой информации из полученного композитного сигнала требуется достаточно сложная система управления, способная эффективно отделить эти две различных составляющих сигнала.
В случае с синхронными двигателями для метода инжекции сигналов конструктивно предпочтительнее использовать двигатели со встроенными магнитами (Permanent Magnet Motors — IPM) в отличие от двигателей с поверхностным расположением магнитов (SPM). В IPM двигателях магниты располагаются внутри ротора, и пространственное изменение сопротивление ротора достаточно велико, чтобы надежно определять его положение. SPM двигатели также могут управляться методом инжекции, но из-за низкого дифференциально-пространственного импеданса определение текущего положения ротора усложнено.
Благодаря новейшим разработкам, используемым в частотных преобразователях Optidrive P2, компания Invertek Drives занимает лидирующие позиции в технологии надежного высококачественного бездатчикового управления синхронными двигателями на очень низких скоростях, что подтверждено рядом реальных практических применений.
Типовые области применения двигателей с постоянными магнитами
СДПТ в сочетании с резольверами или энкодерами де-факто уже являются стандартом для сервосистем, применяемых для высокопроизводительного управления движением, благодаря низкой собственной инерции ротора, позволяющей им обеспечивать высокую точность и динамику позиционирования. В то-же время бесщеточные двигатели (BLDC) широко применяются в системах вентиляции, отопления, кондиционирования (HVAC), где не требуется высокого крутящего момента на низкой скорости, но используются высокоскоростные операции.
В настоящее время имеет место тенденция замены асинхронных двигателей на двигатели с постоянными магнитами в приложениях, где имеет важное значение энергоэффективность работы; а также в приложениях, где требуемое отношение мощности к крутящему моменту на единицу массы не позволяет использовать асинхронные двигатели.
Использование частотного преобразователя Optidrive P2 для управления синхронными двигателями
Новая серия Optidrive P2 частотных преобразователей компании Invertek Drives предоставляет простую в использовании, новейшую технологию бездатчикового управления синхронными двигателями, обеспечивающую высокую точность управления скоростью в широком диапазоне, включая нулевую. Для настройки привода пользователю необходимо ввести только информацию с паспортной таблички двигателя, которая требуется для проведения статического автотестирования двигателя, чтобы получить превосходное качество управления скоростью и моментом.
Статья Дэвида Джонса, R&D директора Invertek Drives. Октябрь 2011г. Перевод ООО «Интехникс»
Типичные задачи и типы электрических машин.
Синхронная машина с постоянными магнитами (IPM motor): Анализ карты эффективности
Высокоэффективный синхронный двигатель с инкорпорированными постоянными магнитами (IMP) имеет широкий рабочий диапазон. В нём используются спечённые редкоземельные постоянные магниты с высокими энергетическими характеристиками. Вращающий момент формируется из реактивного момента, вызванный разностью индуктивностей по d- и q-осям, и магнитного момента, обусловленного взаимодействием магнитных потоков обмотки статора и постоянных магнитов ротора.
Эффективность электрической машины сильно зависит от скорости вращения и нагрузки на валу, поэтому при разработке двигателей и систем управления необходима карта эффективности в диапазоне регулирования. Карта подготавливается таким образом, чтобы она была максимально информативна и понятна с первого взгляда, зачастую используется в индексе производительности данных каталогов. Двигатель IPM нуждается в расширенном анализе для понимания его состояния при изменении типа регулирования (контроль контроль максимального вращающего момента, управление ослаблением поля и т.д.) в зависимости от скорости вращения, нагрузки.
Вспомогательный инструмент Electric Machine Design Toolkit для анализа электрических машин с постоянными магнитами в среде ANSYS Maxwell позволяет проводить необходимые вычисления в автоматическом режиме для построения карты эффективности и характеристики вращающего момента (torque – speed curve), обеспечивает значительное ускорение во времени разработки, благодаря возможности графического отображения карт эффективности. Кроме того, этот инструмент совместим с распределенными вычислениями на сборках кластерного типа (* необязательно) и может выполнять высокоскоростной расчет тысяч расчётных случаев с высокой масштабируемостью от вычисления карты эффективности до вывода графиков.
Построение характеристик для двигательного и генераторного режима
Отображение карт различных характеристик и электромагнитных потерь
Efficiency Map Displayer
- Различные функции отображения
- Изменение шкалы
- Изменение цветового тона и градации
- Отображение сетки
- Функция расстановки меток
- Копирование в буфер обмена
- Сохранение файла изображения
Синхронная машина с постоянными магнитами (IPM motor): Системный уровень моделирования
Высокоэффективный синхронный двигатель с инкорпорированными постоянными магнитами (IMP) имеет широкий рабочий диапазон. В нём используются спечённые редкоземельные постоянные магниты с высокими энергетическими характеристиками. Вращающий момент формируется из реактивного момента, вызванный разностью индуктивностей по d- и q-осям, и магнитного момента, обусловленного взаимодействием магнитных потоков обмотки статора и постоянных магнитов ротора.
Традиционно, большая часть конструкции системы управления и оборудования мотора находятся в процессе самостоятельной разработки компонентов, отсюда и одна из технических проблем, которая заключается в том, что сложно согласовать проект, направленный на оптимизацию всей системы.
Однако эта задача может быть решена путем совместного использования инструментов для анализа электромагнитного поля ANSYS Maxwell и схем управления в симуляторе системного уровня ANSYS Simplorer. Существуют два основных метода, которые объединяют анализ электромагнитного поля и схему управления симулятора: ко-симуляция, метод прямого совместного решения нестационарной задачи (симулятор – конечноэлементная модель) и моделирование на основании эквивалентной модели (поведенческая модель), которая создаётся через анализ электромагнитного поля и присутствует в схеме управления, как один из её элементов. Таким образом с помощью ANSYS Maxwell и ANSYS Simplorer можно выполнить моделирование системного уровня с помощью любой техники в ответ на потребность пользователя.
С помощью любой из этих техник возможно выполнить сопряженное моделирование управления, которое учитывает пространственную гармонику и характеристики магнитного насыщения двигателя. При решении задачи методом ко-симуляции возможно принимать во внимание электромагниные потери, вычисленные с высокой точностью, в то время как моделирование на основе моделей пониженного порядка ROM (эквивалентных моделей) имеет особенность высокоскоростного моделирования системного уровня, управления.
ANSYS Maxwell и ANSYS Simplorer – продукты одной компании, которые имеют свои сильные стороны, включая систему поддержки и совместимость инструментов для сопряженного анализа, по сравнению с инструментами, объединяющими решения, созданные разными компаниями.
Motor Technology
- IPM Motor Features
- The Feature of Mechanical Lift
A conventional SPM (surface permanent magnet) motor has a structure in which a permanent magnet is attached to the rotor surface. It only uses magnetic torque from a magnet. On the other hand, the IPM motor uses reluctance through magnetic resistance in addition to magnetic torque by imbedding a permanent magnet in the rotor itself.
Example) SPM.IPM Motor Rotor Structure
IPM Motor
Motor structure
Comparison of operation noise
Stability Comparison
IPM/SPM Energy-saving Comparison
IPM (Interior Permanent Magnet) Motor Features
High torque and high efficiency
High torque and high output is achieved by using reluctance torque in addition to magnetic torque.
Energy- saving operation
It consumes up to 30% less power compared to conventional SPM motors.
High- speed rotation
It can respond to high-speed motor rotation by controlling the two types of torque using vector control.
Safety
Since the permanent magnet is embedded, mechanical safety is improved as, unlike in a SPM, the magnet will not detach due to centrifugal force.
Vector Control Features
While a conventional system (120 degree conduction system) has the current impressed in the motor as a square wave, a vector control impresses voltage which turns into a sine wave towards the rotor’s position (angle of the magnet), so it becomes possible to control the motor current.
This feature has the following advantages.
— Operation that is efficient and with low torque pulsation can be attained.
— By being able to control the motor current according to the angle of the magnet, smoother acceleration and accurate stop system can be achieved.
— It can instantly respond to speed changes during load fluctuations.
— Compared with conventional systems, the degree of speed regularity greatly improves when lifting or lowering, regardless of the load.
Применение IPM
Применение IPM по сравнению с обычными модулями намного упрощает задачу разработчику. Как правило, для работы с IPM необходимы один или несколько гальванически изолированных источников питания (или один многоканальный источник) и гальванически изолированный интерфейс для связи с контроллером. Количество вторичных источников питания зависит от конфигурации модуля. Для мощных модулей наиболее рационально использовать отдельный источник для каждого силового ключа. Это позволяет устранить проблемы, связанные с шумами и помехами, создаваемыми мощными токами. Напряжение изоляции вторичного источника должно быть в 2 раза больше, чем предельное рабочее напряжение модуля, а ток должен быть достаточным для питания схемы управления с учетом токов заряда затворов и рабочей частоты. При использовании интеллектуальных силовых модулей бутстрепное питание не рекомендуется, так как пульсации напряжения на бутстрепной емкости могут приводить к сбою в работе схемы защиты.
При разработке изолированного источника питания или использовании готового необходимо обратить внимание на величину паразитной емкости между изолированными частями источника. Емкость более 100 пФ может привести к шумам и сбою в работе драйвера.
Параллельно выводам питания схемы управления должен быть установлен электролитический или танталовый конденсатор.
Конденсатор необходим для фильтрации синфазных помех и обеспечения высоких пиковых токов заряда затвора.
Гальваническая развязка сигналов управления IPM может осуществляться с помощью оптопар, импульсных трансформаторов или волоконно-оптических линий связи. В любом случае, большое значение имеет топология платы. Плата должна быть разведена так, чтобы были минимизированы паразитные емкости между изолированными цепями управляющего сигнала, цепями источников питания, управляющими сигналами каналов. Ниже приведены указания, которыми следует руководствоваться при разработке печатной платы для IPM.
- Изолируйте гальванически управляющие и контрольные сигналы. Используйте быстродействующие оптопары с высоким коэффициентом подавления синфазного сигнала (CMR). Рекомендуемые параметры: время переключения — не более 0,8 мкс, CMR — более 10 кВ/мкс. Рекомендуемые микросхемы: HCPL4503, HCPL4504, PS2041.
- Минимизируйте паразитные емкости, используя разнесение проводников или разные слои печатной платы.
- Используйте изолированные источники питания драйверов каждого силового плеча.
- Используйте линии связи схемы управления с IPM минимальной длины.
- Применяйте экранирование. В качестве экрана может быть использован один из слоев платы (см. рис. 5).
Главное препятствие на пути применения IPM — их цена, которая может в несколько раз превысить суммарную стоимость дискретных комплектующих элементов, решающих ту же задачу.
Products
- IE4 – efficiency ahead of its time
- Combination of AC motor’s reliability and Brushless Servomotor’s performance
Show/Hide all images
Permanent magnet electric motors typically use rare earth elements such as Samarium and Neodymium. The commodity price of such elements may be unstable in the future. As such, a challenge for Lafert to meet the cost stability expectation of customers by offering strategically priced products. Therefore Lafert developed and introduced an innovative, cost effective Interior Permanent Magnet Electric Motor (IPM) design that will be best positioned to enjoy a key competitive edge over the global market. The new IPM design will be launched under the name HPF. Identifying the eventual shortcomings of standard permanent magnet electric motors that are currently available in the market, Lafert has clearly taken advantage of a unique product design to offer improved electrical efficiency at stable and reduced production costs to its customers spread across the World. Through its offer of this innovative product, Lafert has tackled the issue of the increasing cost of rare earth elements. The new sensorless, interior permanent magnet rotor design has been constructed without the use of rare earth element magnets. Lafert has thus met the critical and growing demand for cost- and energy-efficient electric motors through its introduction of the innovative Synchronous IPM IE4 motor.
Lafert’s in-house servo and AC induction motor design and manufacturing capabilities have facilitated the development of this uniquely engineered product. In order to develop the new HPF PM Motor, Lafert used a combination of electrical and mechanical product designs inspired by the brushless servo motor’s electrical design and the AC induction motor’s mechanical design. The higher efficiency over standard AC induction motors enhances the power/weight ratio of the motor, thereby allowing for significant size and weight reductions that have resulted in the development of a compact product. Lafert also places great emphasis on materials research. This has resulted in reduced dependency on rare earth magnets for designing our motors, allowing for the use of readily available permanent magnets, which ensure price and supply stability into the future.
The primary benefit offered by the HPF synchronous motor is the reduction in the lifecycle cost of the motor. The combination of servo brushless and induction motor technology used for the development of this product gives it an efficient, noiseless design. Owing to higher energy efficiency, the product dissipates lower heat, which improves its operating life. This motor is primarily targeted toward HVAC applications in pumps, fans, compressors, and blowers, where there is an ever-growing emphasis on reducing the operating cost, weight, and size of the motors. Lafert also offers flexibility in terms of design, customizing the active and mechanical part of this motor to suit specific end-user needs. Unlike most competitors, we have the ability to produce this motor in huge quantities on a regular basis with required modifications as per specific customer needs.
The HPF IPM synchronous motor is available in a wide range of power outputs, ranging from 0.55 kW to 22kW, with full flexibility in motor speed up to 6000 RPM, and it can be controlled by most standard drives. A High Performance Integrated (HPI) version of the product is also available, which includes an integrated drive control system.
Standard specifications
— Wide power output 0.55 — 22 kW
— Compact range in IEC frames: 71 — 90 — 112 — 132 — 160
— Voltage: 3 phase 230 — 480 V
— Speed range up to 4500 RPM
— Designed for different magnetic materials to secure stable cost base
— Sensorless control or with speed transducer
— IPM design (no rare earth magnets) or SMPM design (high flux rare earth magnets) depending on the performance demand
— Controlled by most standard Drives
Options
— Lafert offers a strong competence level to support customization
— Full flexibility regarding motor speed
— Same mechanical selection possibilities (B3, B5 etc) as in a standardized IEC range
Конструкционные особенности двигателя MPI
Абсолютное отсутствие турбонагнетателя является еще одной значимой отличительной особенностью данной системы наряду с многоточечной системой впрыска. В конструкции данных двигателей присутствует обычный бензонасос, который под давлением 3 атмосферы подает топливо во впускной коллектор для последующего смесеобразования и подачи через клапан впуска уже готового состава.
Данная схема работы очень схожа со схемой работы карбюраторных двигателей. С одним отличием, что присутствует отдельная форсунка на каждом цилиндре.
Еще одной не привычной особенностью системы Multi Point Injection двигателя является наличие контура водяного охлаждения для топливной смеси. Это объясняется тем, что в области головки цилиндров очень высокая температура, а давление поступающего топлива очень невелико, из-за этого существует большая вероятность проявления газовоздушной пробки и следственно закипания.
Почему PM двигатели?
Вентиляторы, двигатели и энергосбережение
Вентилятор – [lot. ventilator], устройство, обычно используемое для транспортировки воздуха (газа). Основное применение – системы подачи и удаления воздуха, системы вентиляции, отопления или охлаждения и очистки воздуха для зданий или отдельных комнат.
Электрический вентилятор состоит из: электродвигателя, крыльчатки и корпуса. Если подключить эти три вещи, вы можете получить электрическое устройство – вентилятор. Чтобы использовать этот вентилятор, он должен встраиваться в какое-то устройство. В качестве автономного продукта диапазон вентиляторов очень высок. Во всех устройствах, которые накачивают или вдувают воздух, установлены вентиляторы. Стоимость устройства обычно определяется стоимостью вентилятора, который он используется в устройстве.
Следует отметить, что вентилятор – устройство с очень специфической особенностью – оно постоянно работает («Вентилятор – друг труда – пусть работает всегда»). Например, автомобиль стоит и работает относительно коротко, в то время как вентиляторы не останавливаются. Именно поэтому вентиляторы используют много электроэнергии, и все мы знаем, что они становятся более дорогими.
В течение прошлого столетия предприятия или отдельные потребители не имели представления об экономии электроэнергии. Использование энергии резко изменилось с энергетического кризиса 1970-х годов, когда цены внезапно выросли, а энергия стала «товаром». В конце 20-го века экологические причины стали все более актуальными. Климат в мире меняется. Все эксперты согласны с тем, что время для обсуждения ушло – сегодня мы должны действовать в направлении повышения энергоэффективности.
IEC и энергоэффективность
Это одна из причин того, что Европейский союз все больше сосредотачивается на энергосбережении. Требования к вращающимся моторам и вентиляторам очень высоки.
IEC (Международная электротехническая комиссия) классифицирует энергоэффективность в «классы». Чем выше класс, тем меньше потеря энергии (энергия, которая превращается в тепло). Существующие требования Европейского Союза к двигателям – не меньше, чем класс IE2. Поэтому, выбирая вентиляционную установку, очень важно иметь в виду класс энергоэффективности.
Программа KOMFOVENT VERSO Selection предлагает самые эффективные двигатели PM, которые соответствуют классам IE4 и iE5 (самая высокая энергоэффективность). Это означает инновационный подход и низкое потребление энергии в продуктах KOMFOVENT. Двигатели класса IE4 и IE5 уменьшают потери энергии на 50% по сравнению с классом IE2.
Мощные постоянные магниты используются в конструкции двигателя PM (магнитный двигатель или двигатель на постоянных магнитах). Они увеличивают производительность двигателя и уменьшают размеры двигателя.
Преимущество двигателей PM по сравнению с, например, двигателями переменного тока (AC), что их производительность может контролироваться в широких пределах, поддерживая высокую эффективность в то же время. Это особенно актуально для вентиляции, поскольку производительность вентилятора редко фиксируется и варьируется в зависимости от потребности в вентиляции.