Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шатун двигателя какие проблемы

Длинноходные и короткоходные моторы – в чем разница, и какие лучше?

Признайтесь, что вы часто видели в тест-драйвах фразы про «типично короткоходный характер мотора» и не вполне понимали, о чем идет речь. Сегодня мы наконец расскажем, что такое коротко- и длинноходные моторы, в чем разница подходов к проектированию двигателей, и почему сейчас можно уверенно сказать, что «длинноходники» все-таки победили.

Средняя скорость, и какой она бывает

Д ля понимания вопроса придется вспомнить немного о конструкции ДВС и принципах его работы. Вы наверняка знаете, что в основе любой конструкции двигателя внутреннего сгорания лежит воздействие расширяющихся газов на поршень. Поршни могут быть любой формы и размеров, но у любого поршня есть такой параметр, как средняя скорость, и от нее зависит очень и очень многое.

Средняя скорость поршня – это величина, которую можно определить по формуле Vp = Sn/30, где S – ход поршня, м; n – частота вращения, мин-1. И именно она определяет степень возможного форсирования двигателя по оборотам, ускорения элементов шатунно-поршневой группы во время работы, а также его механический КПД.

От средней скорости поршня зависят нагрузки на стенку поршня, на поршневой палец, шатун и коленвал. Причем зависимость эта квадратичная: с увеличением скорости (Vp) в два раза нагрузки увеличиваются в четыре раза, а если в три – то в девять раз.

Эксперименты инженеров-мотористов уже очень давно доказали, что классическая конструкция шатунно-поршневой группы выдерживает максимальную скорость порядка 17-23 м/с. И чем выше эта величина, тем скорее изнашивается мотор. Увеличить скорость поршня практически невозможно – самые облегченные гоночные двигатели Формулы-1 имели скорость порядка 23-25 м/с, и это безумно много. Этого удалось достичь только потому, что «формульные» моторы рассчитаны на очень короткую эксплуатацию – от них не требуется «ходить» по 100 000 км.

От теории – к практике. Как известно, мощность мотора – это производная от крутящего момента, помноженного на обороты (об этом я писал большую статью с таблицами и графиками). То есть, если мы хотим получить больше мощности, то надо увеличивать обороты. А так как скорость поршня ограничена, то у нас не остается другого выбора, кроме как уменьшить его ход. Чем меньше расстояние нужно пройти поршню за один оборот, тем меньше может быть его скорость.

Короткоходные, длинноходные и «квадратные» моторы

Казалось бы, выше мы только что озвучили два прекрасных аргумента для максимального уменьшения хода поршня. К тому же, чем меньше ход поршня, тем больше диаметр цилиндра при том же объеме, и тем более крупные клапаны можно поставить. Улучшается газообмен, а значит, и работа мотора в целом… Но, как оказалось, безмерно уменьшать ход тоже нельзя.

Чем меньше ход, тем больше должен быть диаметр цилиндра, если мы хотим сохранить объем. А вот форма камеры сгорания с ростом диаметра цилиндра ухудшается, соотношение объема камеры и площади неизбежно растет, увеличивается коэффициент остаточных газов, возрастают тепловые потери, ухудшается сгорание топлива… КПД падает, склонность к детонации повышается, ухудшаются экономичность и экологичность.

При уменьшении хода поршня снижается, к тому же, и диаметр кривошипа коленчатого вала, а значит, уменьшается крутящий момент мотора. Ухудшаются и массогабаритные параметры двигателей – они становятся куда крупнее в горизонтальном сечении. К тому же для сохранения рабочего объема приходится увеличивать число цилиндров, а это уже ведет к резкому повышению сложности конструкции. В общем, нужен был компромисс.

Основные задачи проектирования моторов решили к 60-м годам прошлого века, тогда же нащупали пределы прочности конструкции по средней скорости поршня. Стало ясно, что оптимальные параметры мощности, общего КПД и габаритов у атмосферного мотора получаются в том случае, если диаметр цилиндра равен ходу поршня или чуть меньше.

На фото: двигатель Nissan Qashqai

Если они совпадают, то такие моторы еще называют «квадратными». Моторы, у которых диаметр цилиндра все-таки больше хода поршня, называют короткоходными, а те, у которых он меньше, – длинноходными.

Внимательный читатель скажет: стоп, а откуда вообще взялись короткоходные моторы, если эксперименты доказали, что эффективнее всего «квадратные» или чуть-чуть длинноходные?! Все просто: короткоходники получили распространение в автоспорте. Там расход топлива и приемистость на низких оборотах не сильно «делали погоду», и можно было пожертвовать КПД ради достижения большей мощности на высоких оборотах при сохранении малого рабочего объема.

Для получения лучшей топливной экономичности, тяги и чистоты выхлопа, наоборот, ход поршня увеличивали, жертвуя оборотами и максимальной мощностью. Длинноходные моторы применяли там, где были нужны тяга и экономичность.

Тем временем, к 80-м годам среднюю скорость поршня в серийных моторах довели до предела в 18 м/с, дальше ее увеличивать не получалось. Такая ситуация сохранилась до 90-х, когда требования к массогабаритным и экономическим характеристикам моторов резко возросли.

Длинноходный прогресс

90-е годы – это в первую очередь массовое внедрение новых экологических норм, резкое повышение массы кузова автомобилей из-за новых требований по пассивной безопасности, а заодно и возросшие требования к габаритам и экономичности силовых агрегатов. Машины становились просторнее изнутри и безопаснее во всех смыслах.

А двигателям приходилось поспевать за прогрессом. Массовый переход на многоклапанные головки блоков цилиндров повысил мощность и сделал моторы чище. Средний рабочий объем мотора постарались уменьшить и тем самым выиграть в расходе топлива и габаритах. Прогресс в области конструирования поршневой группы позволил уменьшить высоту поршня и увеличить длину шатуна, сделав больше механический КПД мотора.

Следовательно, стало возможно перейти к более длинноходным конструкциям, которые при том же рабочем объеме были компактнее, имели больший крутящий момент и к тому же стали экономичнее. Облегчение поршневой группы позволило снизить нагрузки на нее при высоких оборотах, а массовое внедрение турбонаддува и регулируемого впуска – еще и выиграть в максимальной мощности и тяге. Умеренно длинноходные моторы от этого только выиграли.

В 2000-е в стане двигателей объемом от 2 литров наметился перелом в переходе от «квадратов» к длинноходным конструкциям. И вот вам несколько примеров. При рабочем объеме 2 литра моторы VW серии ЕА888 (стоят на множестве моделей концерна от Skoda Octavia до Audi A5) имеют ход поршня 92,8 мм при диаметре цилиндра 82,5, а 2-литровые моторы Renault серии F4R (более всего известный по Duster) – 93 мм и 82,7 соответственно. Моторы Toyota объемом 1,8 л серии 1ZZ (Corolla, Avensis и др.) – еще более длинноходные, их размерность 91,5х79.

На фото: двигатель Volkswagen Golf GTI

Рабочие обороты таких двигателей заметно уменьшились, особенно у турбонаддувных, снизились и обороты максимальной мощности. А значит и снижение механического КПД уже не столь важно, зато преимущества налицо. По габаритам моторы лишь немного больше «классических» 1,6 из недавнего прошлого, а по тяге и расходу топлива намного превосходят однообъемных предшественников.

В современных моторах пытаются сочетать высокую эффективность работы длинноходных моторов и повышенный механический КПД короткоходных. Так, в ультрасовременном (но тем не менее уже снимаемом с производства) моторе BMW серии N20В20 (стоят на 1-й, 3-й, 5-й сериях, X1 и X3) применяется несимметричная поршневая группа, в которой ось коленчатого вала и ось поршневых пальцев смещены относительно оси цилиндров. Тут используются регулируемый маслонасос, плазменное напыление цилиндров, бездроссельный впуск и прочие технические «фокусы» для снижения механических потерь и сопротивления впуска. Размерность этого длинноходного мотора 90,1х84, и никто не скажет, что у него плохие характеристики хоть в чем-то, кроме надежности.

Дизели

Дизельные моторы, которые в силу особенностей рабочего цикла обычно являются длинноходными и низкооборотными, выиграли вдвойне. Внедрение турбонаддува резко подняло крутящий момент и позволило снизить степень сжатия, а прогресс топливной аппаратуры и поршневой группы – еще и увеличить рабочие обороты.

На фото: двигатель Volkswagen Golf TDI

В итоге дизели превзошли по литровой мощности атмосферные бензиновые моторы, а по крутящему моменту – бензиновые моторы с наддувом. Так, двигатели серии N57 (3-я, 5-я, 7-я серии, X3, X5 и др.) от BMW при диаметре цилиндра 84 мм и ходе поршня 90 мм имеют рабочий объем 2,993 литра, мощность до 381 л. с. и 740 Нм крутящего момента. Средняя скорость поршня при этом – 13,2 метра в секунду.

Оборотная сторона

Конечно же, беспроигрышных лотерей не бывает, и чудесной высокой отдачи добились ценой надежности – тут нет никакого секрета. Старый принцип актуален и поныне: у «сильно длинноходных» моторов высокая средняя скорость поршня увеличивает нагрузку на стенки цилиндра.

Конечно же, материалы становятся лучше, но при сравнении двигателей одной серии с разными параметрами хода поршня и диаметра цилиндра заметно, что длинноходные модели более склонны к износу поршневых колец и задирам цилиндров. И ресурс поршневой у них оказывается существенно ниже, чем у более «квадратных» собратьев.

А вот при сравнении разных моторов все далеко не так однозначно. На моторах с алюминиевым блоком и алюсиловым покрытием стараются снизить нагрузку на стенку цилиндра в том числе и снижением хода поршня, но, как правило, все равно ресурс получается меньше, чем у моторов с чугунными гильзами или блоком.

Мотор Renault-Nissan серии M4R (Qashqai, Fluence и др.), который пришел на смену уже упомянутому чугунному F4R, имеет ход поршня 90,1 мм при диаметре цилиндра 84 – он все еще длинноходный, но ход поршня значительно сократился. Габариты при этом не увеличиваются за счет более тонкостенной конструкции блока цилиндров.

На фото: двигатель Renault Latitude

Современные двигатели не нуждаются в высоких оборотах для достижения высокой мощности, а экономичность и экологичность становятся все важнее. Пусть даже в реальной эксплуатации заявленные характеристики и не подтверждаются… К тому же, можно путем усложнения конструкции обойти множество ограничений, которые десятки лет заставляли делать выбор между мощностью и экономичностью моторов.

Короткоходные «крутильные» моторы просто вымирают, им нет места в новом мире. Даже в Формуле-1 отказались от экстремальных конструкций с рабочими оборотами за 19 тысяч и соотношением диаметра цилиндра и хода поршня больше 2,4 к 1. Конечно, для фанатов и гоночных серий выпуск подобной техники сохранится, но в практическом плане смысла в ней уже нет. Победа длинноходных конструкций, за редким исключением, фактически состоялась.

Одним из немногих «оплотов короткоходности» до недавнего времени оставались атмосферные V6 и V8 от Mercedes-Benz. Так, моторы серии М272 (E-Klasse W211, M-Class W164 и др.) – откровенно короткоходные во всех вариантах исполнения. Например, у 3-литровой версии соотношение хода к диаметру будет 82,1 к 88. Как и их предки в лице М104, так и их наследники вплоть до М276, они были олицетворением успешных короткоходных моторов. Компания не стремилась к излишней компактности моторов, места было достаточно, а момента у двигателей объемом 3-3,5 литра и так хватало с запасом. Городить длинноходную конструкцию не было смысла.

Читать еще:  Все о тюнинге двигателя автомобиля

Но новое поколение двигателей AMG серий М133/М176 с наддувом стали длинноходными – 83х92 мм, как и перспективная рядная шестерка 3,0 с наддувом серии М256 – 83х92,4 мм.

На фото: двигатель Mercedes-AMG CLA 45 4MATIC

Из «могикан» остаются разве что моторы GM, их блок V8 6,2 Vortec/L86/LT1 все еще не стремится к компактности, имея размерность 103,25х92 мм, и даже компрессорная версия LT4 сохраняет ту же размерность блока. Но это, скорее всего, тоже ненадолго.

Конец спорам

Даунсайз, наддув, непосредственный впрыск, гладкая моментная характеристика, высокий крутящий момент, регулируемый ГРМ и продвинутые трансмиссии сотворили маленькое чудо. Споры «длинноходный или короткоходный» уже более не актуальны.

Моторы вдруг прибавили в литровой мощности до границ, ранее считавшихся возможными только для специально подготовленных гоночных моторов. Увидев цифры в 120-150 л. с. с литра объема, мы уже не удивляемся, и даже 200 л. с. на литр кажутся вполне реальными, а «смешной» паспортный расход топлива для мощной и тяжелой машины кажется вполне реальным. Дизельные двигатели из «гадких утят» превратились в прекрасных лебедей с литровой мощностью даже большей, чем у бензиновых двигателей.

Во многом все это, плюс уменьшение габаритов и веса моторов, стало возможным благодаря длинноходной конструкции. Окончательно оформившийся тренд вряд ли переломится, особенно с учетом прогнозируемого вытеснения ДВС электромоторами и разнообразными «удлинителями дистанции».

Назначение подшипников скольжения

В конструкции моторов внутреннего сгорания присутствуют тысячи малых и больших деталей. Среди них, коленчатый вал является одной из наиболее крупных деталей. Коленвал является одним из важных элементов в моторе.

При помощи коленвала, поступательное движение поршней переходит во вращательное. Это вращательное движение затем через трансмиссию передается на ведущие колеса машины. Коленвал — дорогостоящий элемент, сложный в изготовлении. Поэтому в конструкции мотора, предусмотрены некоторые особенности, с целью продления его службы.

Вкладыши относятся к таким особенностям. Различают коренные и шатунные. Коленчатый вал должен долго и непрерывно вращаться, поэтому для него необходимо было создать благоприятные условия, при которых исключается его преждевременный износ.

Установка роликовых, либо шариковых подшипников, в не решит проблему, поэтому были придуманы специальные подшипники скольжения, способные справиться с этой задачей. В составе вкладышей используются более мягкие металлы, чем металл для коленвала. Они принимают на себя основную нагрузку и износ, а коленвал дольше остается целым.

Дополнительно, эти изделия покрыты сверху анти фрикционным слоем (против трения). Подшипники скольжения в местах контакта с валом смазываются маслом, которое туда подается под давлением из смазочной системы.

При правильном зазоре между подшипником скольжения и шейкой вала обеспечивается достаточный уровень смазки, детали не трутся, а скользят в масле. Нужный зазор, кроме этого, поддержит нужное давление в масляной системе.

Если зазор увеличивается, а это неизбежно при эксплуатации мотора, давление в смазочной системе снижается, что приводит к повышению трения и ускорению износа вкладышей и шеек коленвала, в первую очередь.

Вообще недостаточное давление вредит всем узлам и агрегатам, которые сообщаются со смазочной системой. Для опытных водителей, показатели на панели приборов давления масла подскажут приближение капитального ремонта.

Вкладыши выпускаются двух типов – под коренные шейки коленвала и под шатунные. Изготовлены одни по одинаковой технологии, отличаются размерами. Шатунные меньшего диаметра.

Помимо основного размера, существует ряд ремонтных размеров подшипников, разнящийся на 0,25 миллиметров один от другого. Ремонтных предусмотрено всего четыре, значит последний ремонтный размер будет толще начального, на целый миллиметр.

Re: Разница в весе шатунов-какие последствия?

это плохо, дисбаланс и вибрации, соответственно скорая кончина мотора, да и шатуны должно быстро провернуть, так что либо меняй, либо колено балансируй.

Реально подогнать грамм,ну два.Не более.

Меня всё же интересует именно процесс работы при разных массах.
Разная масса в шейках колена к чему и как приводит мне понятна,а вот про шатуны и их связь с коленом и особенно между собой пока не ясна.

связано это всё как раз через колено общее, а при разных массах силы действующие на колено, в разных точках прилагаются по разному, от сюда и дисбаланс, а это повышенный износ и вибрации, ну и последствия уже дальше более глубокие.

Шатун можно подогнать по весу, только надо сравнить вес нижней и верхней частей. чтобы правильно сточить.
Скорее всего,все 6 грамм находятся ближе к нижней головке.
Дисбаланс поршней или верхней головки шатуна (детали,совершающие возвратно-поступательное движение)намного менее опасен,чем дисбаланс вращающейся детали (нижняя головка).
Я считаю, что даже 40 грамм разницы в массе поршня не приведут к моментальному выходу из строя вкладыша. ИМХО конечно.

Согласен.
Зти силы как раз влияют на коренные вкладыши.А на шатунные как влияет разница именно между массой шатунов?
А есть ли у кого пластиковый калибр для измерения зазора во вкладышах.

6 грамм погоды не сделают в момент вспышки тоесть рабочего хода нагрузка на шейку намного больше чем 6 грамм по отношению к остальным поршням и шатунам

Вот и я придерживаюсь такого мнения.Все меняют шатун при провороте вкладыша и никто не заморачивается с массой.

потому что при покупке шатуна от того же производителя, разница в массе +/-1 грамм, но никак ни 6 и шатуны не изнашиваются в отличие от поршней или колена их может только или погнуть или порвать, я себе на эвик покупал Карилло, так когда в сервисе их взвешали, мне сказали, что по граммам они полностью одинаковы, без расхождения в +/-1 грамм, но стоят как чугунный мост.

Был вчера в магазине,и взвесил все шатуны,которые там были,под мои родные ни один не подходит.
У меня все три родных ровно 617 грамм.
В прошлом году купил шатун,и он оказался 614 грамм,в этом году шатуны этой же фирмы весят 622.5 и 629 грамм.Так что вот так.Лучше конечно чтобы все зап.части весили одинаково.

ха. давайте посчитаем.
8000 оборотов в минуту — это 133 оборота в секунду. это 266 движений шатуна, как следствие 266 раз в секунду 6 лишних граммов ходят туда-сюда.
много это или мало?

ход поршня 75 мм.
это значит, что скорость шатуна на половине хода поршня — 31 м/с.
он набирает эту скорость за 1/4 оборота коленвала = 32000 раз в секунду, или одно ускорение за 0,00003125 секунды.
31 м/с за 0,00003125 секунд это 992000 м/с2 ускорение.
или 99200 единиц g перегрузки.
6 граммов это 0,006 кг. при ускорении 99200g превращаются в 595 лишних килограмм дисбаланса на оборотах 8000 в минуту. которые действуют 2 раза за один оборот: ускорить шатун, и потом остановить.

что скажете теперь? много это или мало?

погоды не сделают, относительно общей массы шатунно-поршневой группы. да, шатунный вкладыш этого цилиндра особенно страшно страдать не будет. на нем итак нагрузка десятки тонн в секунду.
лишние 500 кг. его не парвут. (хотя на самом пределе именно он сдохнет первым)

другое дело, что обычно все эти громадные силы уравновешены за счет противохода 4-х поршней, а в данном конкретном случае противовеса нету. и как раз этот факт создает погоду.

в общем при такой разнице в весе шатунов нагрузка на коленвал и опорные подшипники колена существенно возрастет.

Тут уравновешиваются именно массы,а вот куда деть рабочий ход цилиндра,т.е. сгорание топлива.Это огромная сила,а противовеса с другой стороны нет,так как есть очерёдность работы цилиндров.Или же большие обороты это сглаживают?

ilkari
Мне ваши подсчеты кажутся в корне не верными, и в частности тоже.

В корне неверное — считать ускорение линейным на участке от мертвой точки до середины хода.

А в чатсности неверно:

Откуда берутся 32000 раз в СЕКУНДУ .
В секунду по вашим же выкладкам получается 133.3*4 = 533 раза ускоряется (по четверти оборота)
И ваши колоссальные цифры: в итоге из-за 6 грамм полчается 500 кило — сразу было понятно что не верные.
На шейке шатуна всего то на таких оборотах весит не более тонн 10, при всей массе шатуна, поршня и т.д. А тут из-за 6 грамм 500 кило.
Да и потом, если эти 6 грамм находятся около шейки, то двигаясь практически по кругу вместе с коленвалом они не будут создавать таких ускорений, ускорение будет направлено от оси вращения коленвала. Вот если они будут на другом конце шатуна, только тогда они будут давать нагрузку, как вы думаете.
Еще раз, ускорение не линейное.

п.с. не туда копаете. 6 грамм сами по себе не дадут большой нагрузки на эти подшипники скольжения. А на шатуны, шатунные шейки эффект так и вовсе не значительный (на самом шатуне масса не уравновешена ничем). Тут скажется только дисбаланс массы только относительно оси вращения коленвала, а не масса в абсолюте, и не не на шатунах. Сказаться она может на коренных шейках и прочих узлах в виде вибрационных нагрузок.

Вот это мне кажется близким к правде.У меня сейчас на двигателе разница в 6 граммов,и нет никакой вибрации,слава богу.Значит разница не столь велика.

ilkari
Мне ваши подсчеты кажутся в корне не верными, и в частности тоже.

В корне неверное — считать ускорение линейным на участке от мертвой точки до середины хода.

А в чатсности неверно:

Откуда берутся 32000 раз в СЕКУНДУ .
В секунду по вашим же выкладкам получается 133.3*4 = 533 раза ускоряется (по четверти оборота)
И ваши колоссальные цифры: в итоге из-за 6 грамм полчается 500 кило — сразу было понятно что не верные.
На шейке шатуна всего то на таких оборотах весит не более тонн 10, при всей массе шатуна, поршня и т.д. А тут из-за 6 грамм 500 кило.
Да и потом, если эти 6 грамм находятся около шейки, то двигаясь практически по кругу вместе с коленвалом они не будут создавать таких ускорений, ускорение будет направлено от оси вращения коленвала. Вот если они будут на другом конце шатуна, только тогда они будут давать нагрузку, как вы думаете.
Еще раз, ускорение не линейное.

Читать еще:  Шелест двигателя калина на холодную

п.с. не туда копаете. 6 грамм сами по себе не дадут большой нагрузки на эти подшипники скольжения. А на шатуны, шатунные шейки эффект так и вовсе не значительный (на самом шатуне масса не уравновешена ничем). Тут скажется только дисбаланс массы только относительно оси вращения коленвала, а не масса в абсолюте, и не не на шатунах. Сказаться она может на коренных шейках и прочих узлах в виде вибрационных нагрузок.

Да, разумеется движение шатуна не является равноускоренным. но я взял такое допущение, потому что это сильно упрощает расчет, и не влияет на порядок погрешности.

дальше. я допустил погрешность. да. 32000 это ошибка

надо было 32000/60=533 раза в секунду. (забыл минуты в секунды перевести)

ну и правильная цифра тогда: 595/60=10 кг примерно.
итого 10 кг. не 600 но все равно много.

что касается того, в какой части шатуна сконцентрирован лишний вес — без разницы. расчет приведен только в одной оси вертикальной. ибо расчет очень упрощенный.

и последнее, я так и написал, что нагрузка возрастет только на коленвал и опорные подшипники, ибо шатунные вкладыши и так несут на себе весь весь шатуна, поршня, и поршневого пальца.

Ремонт шатунов двигателя на примере ДВС ЯМЗ согласно технологии

Ремонт шатунов двигателя подразумевает следующие обязательные процедуры:

  • тщательная промывка шатуна двигателя;
  • проверка на отсутствие трещин на магнитном дефектоскопе. Если шатун имеет трещины, то он подлежит выбраковке;
  • Дефектовка шатуна;
  • Ремонт;
  • Контроль параметров шатуна после ремонта.

Ремонт шатунов двигателя: дефектовка шатуна

Основными контролируемыми параметрами шатуна являются контроль износа втулки верхней и отверстие нижней головок шатуна.

Внутренний параметр нижней головки шатуна проверяется после контрольной затяжки шатунных болтов в соответствии с нормативно-технической документацией. Далее проверяется ширина нижней головки шатуна, если она меньше допустимой величины, то шатун для дальнейшей установки на двигатель непригоден.

Далее следует проверка на изгиб, т.е. непараллельность осей отверстий верхней и нижней головок шатуна и проверка на скручивание, т.е. отклонение осей указанных отверстий от положения в одной плоскости (перекос осей). После проверки шатун без ремонта допускается, только в том случае, если отклонения незначительны и не превышают допустимых значений на изгиб и скручивание.

Ремонт шатунов двигателя: втулка верхней головки шатуна

Износ втулки верхней головки шатуна определяют индикаторным нутромером, в случае если диаметр втулки не больше допустимого значения, то она допускается без ремонта. Если это значение окажется выше допустимого, то втулку обязательно требуется выпрессовать и проверить под втулку внутренний диаметр отверстия верхней головки шатуна. Новую втулку запрессовывают с натягом, предусмотрев припуск на обработку втулки по внутреннему диаметру. Далее просверливают каналы для смазки поршневого пальца и проводят окончательную обработку внутреннего диаметра втулки.

Ремонт шатунов двигателя: нижняя головка шатуна

В случае небольшого изгиба и/или скручивания верхней и нижней головок шатуна можно исправить расточкой втулки верхней головки шатуна, обеспечив отклонение от параллельности, положения и расстояние между осями до допустимых значений. Сам шатун править нельзя. Можно лишь править погнутые шатуны с отклонением от прямолинейности не более миллиметра подрезая торцы верхней головки симметрично с каждой из двух сторон. В случае зажатости (уменьшение размера) нижней головки шатуна проводится ее растачивание в номинальный размер согласно нормативно-технической документации.

При ремонте шатуна категорически запрещается установка крышки с другого шатуна, так как комплектность проверяют по меткам спаренности.

История возникновения / изобретения шатунов

Первое доказательство применения шатунов датировано концом III-го в. нашей эры, во времена Римской империи, которы нашли на лесопилках в Иераполя, что в Малой Азии, где применялись механизмы, очень похожие на сегодняшние шатуны, преобразовывающие вращательное движение водяного колеса в поступательное для привода пилы. Такие же механизмы обнаружили на раскопках в г. Эфесе, датированные VI в. нашей эры.

На картинке ниже мы видим как вода вращает колесо, которое вращает колесо поменьше, которое уже передает энергию шатуну через шестерню, преобразующему вращательное движение в возвратно-поступательное.

Посмотрите на видео Древнеримские промышленные водяные мельницы:

Аль-Джазари (арабский ученый и изобретатель) между 1174 и 1200 гг. описал машину для подъёма воды. Конструкция этой машины имела шатун с коленчатым валом (т.е. кривошипно-шатунный механизм). Об этой машине рассказывается в видео с 2:15.

В Италии эпохи Возрождения самое раннее, хотя и не совсем правильно понятое, соединение коленчатого вала и шатуна найдено в книге чертежей Таччола. Четкое понимание их взаимного движения показано художником Пизанелло, который изобразил поршневой насос, приводимый в движение водяным колесом и состоящий из двух простых кривошипов и двух шатунов.

Кривошипы и шатуны становятся «популярны» у изобретателей с XVI века, о чём говорят трактаты и рукописи, например, у Агостино Рамелли (1588 года) «The Diverse and Artifactitious Machines», где можно увидеть 18 конструкций машин, использующих шатуны. А у Георга Андреаса Бёклер в его работе «Theatrum Machinarum Novum» вы уже найдёте 45 самых разных машин.

Шатуны в паровых двигателях

Первая паровая машина, атмосферный двигатель Ньюкомена, была одностороннего действия: его поршень работал только в одном направлении, поэтому в нем использовалась цепь, а не шатун. Соответственно, движение совершалось вперед-назад вместо постоянно вращения.

Последовавшие затем паровые двигатели были, как правило, двойного действия: их внутреннее давление действует на каждой стороне поршня по очереди. Это требует уплотнения вокруг штока поршня, а также шарнира между поршнем и шатуном, размещенного вне цилиндра, в большом подшипнике скольжения, называемом крейцкопф, или ползун.

В паровозах шатуны обычно крепятся прямо к ведущим колесам, соответственно ось этих колес служит коленчатым валом. Шатуны передают движение от ползуна к колесам. Ползуны используются также в больших дизельных двигателях, предназначенных для морских судов.

Шатуны небольших паровозов обычно имеют прямоугольное поперечное сечение, однако иногда используются шатуны круглого сечения, характерные для судовых двигателей. Например, Стивен Леви, строивший как паровозы, так и пароходы, часто использовал круглые стержни для шатунов.

Шатуны в двигателях внутреннего сгорания

В современных двигателях внутреннего сгорания шатуны обычно изготовлены из стали, но могут быть изготовлены из алюминиевых сплавов или титана. Алюминиевые шатуны имеют меньший вес, поглощают избыточное усилие, но быстрее изнашиваются. Титановые шатуны сочетают легкость и прочность, но имеют высокую стоимость. Если же задача обеспечить высокую производительность не ставится, например в двигателях для мотороллеров, то шатун может быть изготовлен из чугуна. Шатуны не закреплены жестко на обоих концах, так что угол между шатуном и поршнем может меняться, так как стержень движется вверх-вниз и вращается вокруг коленчатого вала. Иногда в гоночных автомобилях применяются шатуны, сделанные из цельной заготовки с помощью механической обработки, а не литые или кованые.

На рис. выше мы видим обычный шатун для автомобильного двигателя. Из-за наличия ограниченного пространства внутри поршня, конец, в который вставляется поршневой палец, поменьше, чем тот, что подключают к коленчатому валу, и эти концы называются верхней (поршневой) и нижней (кривошипной) головками шатуна, соответственно.

Внутри головки располагаются вкладыши подшипников скольжения, выполненные на стальной основе с нанесением слоя антифрикционного материала.

Кривошипная головка присоединяется к цапфе на кривошипе. Обычно есть отверстие, просверленное через подшипник и нижнюю головку шатуна так, чтобы моторное масло разбрызгивалось под давлением на стенку цилиндра и смазывало ход поршней и поршневых колец. Большинство небольших двухтактных двигателей и некоторые одноцилиндровые четырехтактные двигатели не требуют наличия насоса для масла, используя схему с подшипником качения. Однако это требует, чтобы коленчатый вал был легкосъемным, чтобы можно было в любой момент заменить шатун.

Все права защищены. 2009-2019
© ООО «СТР-Турбогаз» г.Саратов

Использование материалов сайта без ссылки на источник запрещено.

Коленчатый вал должен выдерживать высокие нагрузки

Сегодня в современных автомобилях в двигателях используется коленвал, с каждой стороны которого находится подшипник. Со временем подшипники изнашиваются и между ними и поверхностью коленвала появляется люфт, что приводит к износу коленвала.

К счастью, современная конструкция двигателя способна долгое время выдерживать большие нагрузки. В том числе способны выдерживать нагрузку и современные коленчатые валы. Например, в дизельном современном двигателе каждый ход шатуна испытывает от воспламенения топлива нагрузку в 10 000 кг, которая, естественно, передается на коленвал.

Итак, на короткое время в одно мгновенье на шатуне присутствует сила, эквивалентная десяти тоннам, которая воздействует на коленвал. И это мы говорим только об одном шатуне. Вы представляете, какую нагрузку получает коленвал в восьмицилиндровом моторе?

И это еще не все. В зависимости от конструкции двигателя коленчатые валы также подвержены вибрациям. Поэтому многие автопроизводители стараются сделать коленчатые валы достаточно прочными и долговечными. Например, коленвал может быть изготовлен из высококачественной стали. Особенно для мощных турбированных высокооборотистых дизельных двигателей.

Для атмосферного (нетурбированного) бензинового двигателя коленвал может быть уже не столь прочен. Поэтому производители часто еще недавно многие коленчатые валы изготавливали из чугуна. Сегодня же в мире наблюдается тенденция по снижению веса автомобиля. В первую очередь двигателя.

В итоге вместо чугунных блоков двигателя во многих современных авто стали использоваться блоки цилиндров из алюминия. Также производители стали использовать облегченные поршни и шатуны. Не обошла эта мода на легкое и коленчатые валы, которые также заметно полегчали. Все это, конечно, не добавляет машине надежности и увы, не гарантирует долгий срок службы двигателя.

«Стуканутые» моторы

«Стуканутые» моторы, проворот вкладышей, «съеденные» валы, отсутствие ремонтных вкладышей и т.д. – одна большая тема «Ремонт постелей и валов».

Человеку, впервые сталкивающемуся с такими проблемами, обычно кажется, что жизнь деталей закончилась и выход тут только один – замена всего и вся. А тут еще и заботливые дилеры со своими фирменными программами, в которых четко указано, что ремонтировать ничего нельзя – только менять, и чаще всего весь узел в сборе: «мы, конечно, очень сожалеем (как же – сожалеют они!), что Вам придется заплатить приличные деньги (а куда Вы денетесь!), но другого выхода нет». Причем ни одной внятной причины, почему деталь нельзя отремонтировать, не приводится – нельзя, и все тут (хотя причина тут вполне понятна – желание побольше подзаработать на продаже запчастей). Так вот, уважаемые господа – выход есть, без потери качества и значительно (в разы) дешевле. Мы утверждаем это, основываясь на своем собственном многолетнем опыте. А теперь подробнее о разных случаях из практики и способах ремонта.

Читать еще:  Шумная работа двигателя на газу

Случай 1. Вал изношен, а ремонтные вкладыши не выпускаются. Ситуация довольно типична для мотоциклов и современных двигателей.

Для начала небольшое лирическое отступление «О дилерах».

Дилеры объясняют это тем, что при шлифовке вала якобы снимается «особый упрочненный слой» — чушь полная: коленвалы подвергаются поверхностной закалке токами высокой частоты, при этом толщина слоя даже теоретически никак не может быть меньше 0,5 мм, поэтому любые коленвалы можно шлифовать в ремонтный размер. Кстати, через несколько лет после начала выпуска двигателя ремонтные вкладыши обычно появляются в продаже (так было, например, с двигателями VR6 (VW) и V6 (Ауди). Вопрос дилеру – а как же «особый упрочненный слой»? Иногда ситуация доводится до полного абсурда, особенно преуспела в этом фирма «Форд» — на некоторых ее новых двигателях с алюминиевым блоком цилиндров вообще запрещено даже ослаблять болты крепления коренных крышек и шатунов, а при малейших подозрениях на повреждение вкладышей замене подлежит вся нижняя часть двигателя (т.е. блок цилиндров с коленвалом, поршнями и шатунами в сборе). И можно было бы поверить в некие волшебные свойства деталей этого двигателя, которые могут быть осквернены одним только прикосновением рук механика, если бы не одно «но»: аналогичные (чтобы не сказать – такие же) двигатели устанавливаются на автомобили «Мазда», но почему-то для них существуют и ремонтные вкладыши, и поршневые кольца, и поршни (кстати – абсолютно взаимозаменяемые с деталями «Фордов»), и никто не запрещает заниматься разборкой-сборкой.

Невольно вспоминается случай из нашей практики:

На новом Ford Focus CMax с двигателем 1,8 л (куплен у официального дилера, пробег – 5000 км) клиент случайно заезжает в глубокую лужу, двигатель глохнет и больше не заводится. Клиент, естественно, обращается в свой сервисный центр, где узнает, что случай не является гарантийным, и ремонт надо будет оплачивать. Неприятно, но что делать? Самое интересное начинается, когда дилер снимает двигатель, начинает его разбирать, доходит до пункта своей инструкции, запрещающего ему «дотрагиваться» до нижней части двигателя, и после визуального осмотра выносит свой вердикт — блок цилиндров с коленвалом, поршнями и шатунами в сборе подлежит замене (а это где-то около 5500 долларов!) И вот тут уже клиент в шоке. Он начинает понимать, что здесь что-то не так. Распрощавшись с гостеприимным дилером и с трудом уговорив его напоследок хотя бы разобрать двигатель до конца, клиент привозит детали к нам. После тщательных промеров нас «ужасает» масштаб разрушений – согнут один шатун и слегка потерт шатунный вкладыш, все остальное – как будто только что с завода, что и неудивительно – ведь пробежала-то машина всего ничего. В результате, заказываем по «Мазде» оригинальные запчасти: один шатун с поршнем в сборе и один шатунный вкладыш, полируем коленвал и отдаем счастливому клиенту – все, проблема решена. Даже не хочется сравнивать этот ремонт по стоимости с официальным – и так все ясно. Выводы делайте сами.

Конечно, дилеры до зубов вооружены документацией фирмы-изготовителя автомобиля, но при этом мало кто умеет пользоваться микрометрами и нутромерами (если такой инструмент у них вообще имеется, простая лекальная линейка для проверки плоскости – и то редкость), в лучшем случае – штангенциркулем, а чаще всего износ определяется просто на глаз.

Поэтому, небольшой совет напоследок: поинтересуйтесь у тех, кто будет ремонтировать Вам двигатель, какими инструментами они будут измерять износы, а еще лучше – попросите поприсутствовать при этом и посмотрите, как они будут это делать.

Но вернемся к нашему случаю. Итак: налицо износ вала и отсутствие в программе изготовителя ремонтных вкладышей. Что делать?

Мы поступаем следующим образом: сначала ищем ремонтные вкладыши в каталогах производителей запчастей для вторичного рынка – очень часто в их производственной программе имеются ремонтные вкладыши, не поставляемые фирмами-изготовителями двигателей. Если же и это не помогло – подбираем вкладыши от другого автомобиля с соответствующей доработкой (перегибание по диаметру, перебивка замков, обрезание по ширине, проточка канавок, сверление отверстий и т.д.) См. фото 1:

  1. старые изношенные вкладыши (образец)
  2. заготовка (подобранные вкладыши)
  3. вкладыши перегнуты и обрезаны в размер
  4. готовые вкладыши

Фото 1. Доработка вкладышей для двигателя мотоцикла.

В крайнем случае, если не удается ничего подобрать, то выручает наварка шейки. Конечно, само слово «наварка» пугает, но, если все делать грамотно, то результат обычно очень хороший – у нас есть опыт, когда валы выхаживали сотни тысяч километров без поломок. Главное, чтобы навариваемый вал был без трещин.

Фото 2. Наваренная шатунная шейка коленвала.

Случай 2. Вкладыш провернулся и разбил свое посадочное место в блоке цилиндров.

Фотографии типичных дефектов. Ничего страшного, все можно поправить.

Отверстия под втулки и вкладыши валов в блоках цилиндров выполняются с большой точностью, чтобы обеспечить хорошее прилегание вкладыша по всей окружности. Если просто поменять вкладыш в поврежденном отверстии, то его рано или поздно (а чаще – сразу) провернет снова. Поэтому посадочные отверстия (постели) под вкладыши необходимо проверять и при необходимости ремонтировать. Также очень важно при ремонте не сместить ось вала, так как смещение оси может привести к тому, что двигатель потом будет просто невозможно собрать – не встанет на место промежуточная шестерня газораспределительного механизма, поршни будут упираться в прокладку головки блока, не говоря уже о трудностях с подсоединением коробки передач. Поэтому подход в каждом конкретном случае разный, но смысл всегда один и тот же – надо не просто восстановить отверстие в блоке цилиндров, но и добиться того, чтобы это не ухудшило работоспособность блока цилиндров.

Для ремонта постели балансирного вала отверстие растачивается в больший диаметр, изготавливается дополнительная втулка, в которую запрессовывается «родная» втулка, и весь получившийся «бутерброд» вставляется в блок цилиндров.

Если речь идет о коренных вкладышах, то способ ремонта выбирается, исходя из величины повреждения: если отверстия повреждены не сильно (речь идет о сотых долях миллиметра), то можно занизить крышки или саму поверхность блока под крышки, а затем расточить отверстия в первоначальный размер.

Кстати, этот станок позволяет растачивать отверстия в очень большом диапазоне диаметров, в том числе и для блоков цилиндров грузовиков.

Фото 10. Расточка постели в блоке цилиндров FIAT (V-образный, 8 цилиндров).

Последняя доводочная операция – хонингование постели.

Фото 11. Хонингование постели в блоке цилиндров (Мерседес-Бенц, двигатель М137 (V-образный, 12 цилиндров).

Если постель в блоке цилиндров повреждена очень сильно, то можно перед расточкой подварить поверхности – мы умеем это делать как по алюминию, так и по чугуну. А дальше процедура та же самая – расточка и хонингование.

Случай 3. Разбиты отверстия в головке блока цилиндров под распредвал и изношены шейки распредвала.

Для головки блока цилиндра не менее, а может быть, даже и более важно, чем для блока, добиться, чтобы не «ушла» ось распредвала, особенно если применяются гидротолкатели. Поэтому основной способ ремонта – расточка отверстий «как чисто» и наварка шеек распредвала. Иногда приходится подваривать отверстия постели. Кстати, за всю нашу многолетнюю практику не было ни одного случая поломки распредвала после наварки, это очень надежный и эффективный метод.

Фотографии типичных дефектов (Фото 19,20 и 21). Ничего страшного, все можно поправить.

Этот случай достаточно сложный. Здесь придется специально изготавливать сегменты и вваривать их в постель с последующей расточкой соосно всей постели.

А дальше все по обычной процедуре: приварка и расточка. Последняя операция – сверление масляного канала.

Случай 4. Втулки распредвала под обработку.

Самый простой случай: втулки устанавливаются на свои места, а затем протачиваются в нужные размеры.

Очень важно добиться совмещения отверстий для подачи масла. Втулка устанавливается при помощи оправки на специальный клей.

Слабые места силового агрегата ВАЗ 21213

  • Водяной насос;
  • Сальники двигателя, МКПП и раздаточной коробки;
  • Генератор;
  • Стартер;
  • МКПП;
  • Прокладка крышки клапанов;
  • Соединения патрубков системы охлаждения;
  • Радиатор;
  • Термостат;
  • Расширительный бачок;
  • Вакуумный усилитель тормозов.

Водяной насос (помпа) отмечается частыми выходами из строя на новых автомобилях после 2 000 км.

Сальники в следствие низкого качества требуют более частой замены, чем это требуется согласно руководству по эксплуатации.

Генератор имеет высокую вероятность отказа. Как правило, он сгорает даже на новых авто не достигших пробега 4 000-10 000 км.

Стартер имеет низкий ресурс работы без ремонта.

На коробке передач, одним из частых дефектов является вылет пятой передачи. Кроме того, появляется не полное включение передач.

Прокладка клапанной крышки со временем теряет свойства, и пропускает масло наружу.

А еще интересно: Замена масла в переднем и заднем мостах ВАЗ Нива

Соединения патрубков системы охлаждения в местах установки хомутов не надежные и очень рано теряют герметичность, что чревато потерей тосола.

Радиатор течет. Проблема происходит по причине появления трещин в трубном пакете радиатора сопровождающихся потерей охлаждающей жидкости. Данный дефект принял массовый характер.

Термостат не обеспечивает тепловой режим охлаждающей жидкости системы охлаждения двигателя. Проявление данной проблемы не является исключением. Причина дефекта в отказе клапанного механизма внутри термостата. Для проверки исправной работы термостата достаточно после запуска мотора опустить ладонь на нижний (отводящий) шланг, по которому горячий тосол циркулирует в радиатор для охлаждения. При исправной работе термостата через некоторое время шланг должен стать горячим, если шланг остался холодным термостат подлежит замене.

Расширительный бачок трескается и вытекает тосол. Появление трещин происходит по причине отказа паровоздушного клапана в пробке бачка вследствие повышения давления.

Вакуумный усилитель тормозов (ВУТ). Проявляется тугостью педали тормоза. Возможно плавание оборотов при выжиме педали тормоза, а также шипение. Проблема решается заменой вышедших из строя резинотехнических изделий, заменой хомутов в соединениях.

  • Вибрация на скорости 80-90 км;
  • Ненадежность конструкции натяжителя ГРМ;
  • Модуль зажигания;
  • Шумит бензонасос;
  • Низкий крутящий момент;
  • Длинный ход рычага коробки передач;
  • При порыве цепи ГРМ гнутся клапаны;
  • Вибрация рычага переключения передач;
  • Слабая динамика на трассе из-за недостаточной мощности.

PS. Уважаемые Нивоводы! Жду ваших комментариев, вопросов и отзывов по возникшим проблемам, слабым местам и недостаткам в процессе эксплуатации, обслуживании и ремонте движка ВАЗ 21213.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector