Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Высокий ток двигателя причины

Холостой ход электродвигателя

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Электродвигатель переходит в режим холостого хода, когда с его вала снимают рабочую нагрузку. В этом случае можно определить такие важные параметры функционирования устройства, как намагничивающий ток, мощность и коэффициент потерь в элементах конструкции привода. Но главное – в режиме холостого хода можно определить исправность устройства.

Так, электродвигатель на холостом ходу греться не должен. Но в некоторых случаях температура привода повышается – и это сигнализирует о неполадках, которые впоследствии могут проявить себя.

Параметры холостого хода электродвигателя

Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором. Но главное – оно потребляет меньше электроэнергии, что особенно важно для контроля правильности работы мотора.

В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального. Существует таблица, в которой указаны данные значения.

Так, например, ток холостого хода электродвигателя на 5 кВт при частоте вращения в 1000 оборотов в минуту составляет 70% от номинального (см. рис. 2). При частоте вращения 3000 оборотов в минуту – всего 45% от номинального (см. рис. 3). Это важно учесть, так как если фактическая сила тока значительно расходится с расчётной, то это сигнализирует о неполадках.

Стоит отметить, что параметры работы двигателя обычно указаны в прилагаемой к нему документации или могут быть получены посредством расчётов.

Что делать, если греется электродвигатель на холостом ходу

Электродвигатель на холостом ходу греться не должен. Допускается лишь незначительное увеличение температуры, обусловленное естественными причинами – появление трения в подшипниках на валу ротора и сопротивление в обмотке. А вот заметный нагрев сигнализирует в первую очередь о неполадках в устройстве.

Чаще всего нагревается асинхронный электродвигатель на холостом ходу из-за межвиткового замыкания в обмотках. Это требует срочного ремонта. Ведь при повышении нагрузок межвитковое замыкание может привести к перегреву и выгоранию обмотки – и, как следствие, повреждению как самого ЭД, так и конструкции, в которую он установлен.

Ещё одна возможная причина нагрева ЭД в этом режиме – эксплуатация в нештатных условиях. Например, превышение напряжения. В этом случае необходимо срочно отключить питание двигателя, так как из-за перегрева может возникнуть межвитковое замыкание в обмотках или замыкание обмотки на корпус двигателя.

Реже нагрев ЭД наблюдается из-за затруднённого движения ротора. Стоит убедиться, что подшипники работают нормально, а между обмотками ротора и статора не попали загрязнения.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Как определить неисправную обмотку

Для определения межвиткового замыкания в электродвигателе, его необходимо разобрать. Произвести визуальный осмотр. Дефект можно определить по внешнему виду обмоток. На них видны места кроткого замыкания, как показана неисправность ротора и статора на рисунках снизу:

Читать еще:  Выдавливание масла из двигателя причины

Однако зачастую признаки межвиткового замыкания обнаружить визуально невозможно. Поэтому обслуживающий персонал должен знать, что делать в таких ситуациях. При отсутствии видимых неисправностей применяют следующие методы.

Поиск неисправности с помощью металлического шарика

Выявить замыкание изоляции можно при помощи понижающего трехфазного трансформатора. Напряжение вторичной обмотки не должно превышать 40 Вольт.

На разобранный двигатель подается напряжение с трансформатора. Внутрь двигателя по кругу запускают металлический шарик. При исправных обмотках он начинает «бегать» по кругу без остановки.

Если имеется замыкание обмотки, то шарик, сделав два три круга примагничивается в месте неисправности.

Если отсутствует шарик, проверить можно с помощью пластины из трансформаторного железа. Можно использовать железо от неисправного трансформатора. Пластину прикладывают по кругу поочередно. В неисправном месте пластина начнет вибрировать. В остальных местах она примагничивается.

Проверяя исправность электродвигателя, не стоит забывать о технике безопасности. Корпус двигателя должен быть заземлен. При этом, категорически запрещено подавать напряжение выше 40 Вольт на обмотки.

На рисунке снизу показана методика проверки с помощью шарика:

Проверка специальным прибором

Поиск межвиткового замыкания электродвигателя можно производить с помощью прибора для проверки пробоя изоляции обмоток. Его можно приобрести через интернет или сделать самостоятельно. Многочисленные схемы приведены в интернете. Они не сложные. Повторить может любой специалист, имеющий навыки работы с паяльником и разбирающийся в электросхемах.

Как определить неисправность, подробно расписано в инструкции к прибору. Диагностика выполняется за считанные минуты. Однако, для выполнения диагностики необходим осциллограф.

Это дорогостоящий прибор. Работать на нем умеют не все мастера. Поэтому этот метод проверки не получил массового распространения.

Сейчас промышленность выпускает устройства, которые не требуют применения осциллографа. В нем имеются два светодиода, по которым определяют неисправность.

Прибор представляет собой генератор, колебательный контур которого состоит из конденсатора и обмотки двигателя. Подстроечным резистором добиваются возбуждения контура. В этом случае светодиод начинает мигать. Поочередно подсоединяют все обмотки. При подключении неисправной обмотки, светодиод будет гореть постоянно. Т.е. произойдет срыв генерации.

Диагностика якоря с помощью дросселя

Для проверки якоря применяют дроссель. Он представляет собой трансформатор с вырезанным сердечником. Используется прибор заводского изготовления или самодельный.

Сделать его можно при наличии неисправных вибрационных насосов «Малыш» или «Ручеек». Подробная инструкция с описанием имеется в интернете.

Проводились измерения на заводском приборе и самодельном, изготовленном по методике, описанной в интернете. Результат оказался одинаковым.

Как проверять неисправность данным устройством. В вырез помещается якорь. На дроссель подается напряжение. При этом обмотка якоря будет представлять вторичную обмотку трансформатора.

С помощью пластины из трансформаторного железа проверяем исправность обмотки. Постепенно поворачивая якорь, в месте пробоя, пластина примагничивается к якорю и начинает вибрировать. Это показано на нижеприведенном рисунке:

Измерение сопротивления тестером

При отсутствии дросселя можно произвести проверку аналоговым тестером. Стоит отметить, что таким образом можно проверить обрыв обмотки, а замыкание витков проверяют вышеописанным способом.

Для этого производят замеры между ламелями якоря. Сопротивление проводников должно быть одинаковым.

Обязательно производят проверку замыкания проводов на корпус. Для этого необходимо один конец тестера соединить с корпусом и поочередно прозвонить каждую обмотку. Такую проверку выполняют при условии отсутствия обрыва в обмотках.

На фото снизу показано, как измерять сопротивление проводников:

Проверка статора тестером

Проверить целостность обмотки статора можно с помощью тестера. Для этого достаточно измерить сопротивление каждой в отдельности. Замеры выполняют с помощью высокоточного прибора. Не лишне проверить на отсутствие пробоя изоляции на корпус с помощью мегомметра.

Читать еще:  Двигатель ahl схема ремней

На рисунке вверху показана прозвонка целостности обмоток:

Межвитковое замыкание якоря

Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.

Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.

Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.

Теперь я расскажу о том, как подключаются асинхронные движки.

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Сперва разберем тип соединения в звезду.

Подключение асинхронных электродвигателей

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

Подключение асинхронных электродвигателей

При этом соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда, как отрицательной – большие токи пуска.

Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому, как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети. Это стало причиной того, что подключая и налаживая двигателя этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи. Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий). Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового). Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.

Для расчета рабочего конденсатора существует следующая формула:

Пусковой же конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

Читать еще:  Renault megane технические характеристики двигателя

Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

Как определить потребляемый ток электродвигателя

Зная мощность, легко можно высчитать величину потребляемого тока. Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер. Опять же учитывайте, что такой ток мотор будет брать только под нагрузкой максимально близкой к номиналу. Полунагруженный электродвигатель и тем более на холостом ходу будет потреблять значительно меньший ток.

Для определения тока в однофазных сетях, необходимо мощность разделить на напряжение. Например, при работе двигателя напряжение в месте его подключения равно 230 Вольт. Это важно так, как после включения нагрузки напряжение скорее всего понизится в месте подключения электродвигателя.

Если например, мощность мотора на 220 Вольт по измерениям оказалась равной 1.5 кВт или 1500 Ватт. Делим 1500 на 230 Вольт и получаем, что рабочий ток двигателя приблизительно равен 6.5 Ампер.

Устранение перекоса фаз

Если результаты замеров выявят наличие несимметричности напряжений фаз, следует принять меры чтобы устранить перекос. Защита от перекоса фаз в трехфазной сети выполняется следующими способами.

  • На этапе проектирования следует равномерно распределить нагрузку по фазам. Приборы, имеющие однофазное питание не должны сосредотачиваться на одном проводнике, оставляя незагруженными другие. Кроме количественного распределения по фазам следует учитывать мощностные характеристики электрических устройств.
  • В ранее введенных в эксплуатацию трехфазных сетях, где каждая фаза не рассчитывалась на перегрузку при возможности следует поменять схему потребления энергии. В условиях кризисной ситуации необходимо поменять мощность потребителя.
  • Недостаточно эффективный способ обеспечить необходимое напряжение на каждой фазе трехфазной цепи это применение стабилизаторов напряжения.Трехфазные стабилизаторы напряжения конструктивно включают в себя однофазные, которые реагируют на изменение параметров конкретно на своей фазе. Поднятие, опускание напряжения вызывает ответную реакцию на других. Это может в некоторых случаях вызвать вторичный перекос с уже другими параметрами. Невозможность 100 % гарантии защиты от последствий перекоса фаз основной недостаток стабилизаторов напряжения.
  • Использование в трехфазной системе питания симметрирующего трансформатора позволяет выравнивать напряжение не только на отдельной конкретной фазе, а обеспечивать симметричность напряжений на всех трех согласно требуемых норм.Кроме этого прибор сглаживает напряжение переходного процесса при подключении в сеть мощных асинхронных двигателей, дросселей, трансформаторов и другого подобного оборудования.Устройство способно устранить фазный перекос в большом диапазоне значений напряжения.
  • Стабилизатор напряжения, симметрирующий трансформатор это дорогие устройства, не всегда есть возможность их применить. Существует достаточно простой и эффективный способ не допустить критического перекоса фаз — применение специального реле.

Если параметры трехфазной сети выходят за пределы установленного диапазона реле отключит источник питания. Когда параметры восстановятся до приемлемых значений, реле самостоятельно возобновит подачу питания.

Ответственное отношение к равномерному распределению нагрузки по фазам не гарантирует избежать перекос. От обрыва нулевого провода никто не застрахован, соединительный контакт может от перегрева «отгореть» в любой момент. Поэтому к рекомендациям по оборудованию трехфазной сети приборами защиты от перекоса следует прислушаться. Единовременные затраты сохранят работоспособность более дорогому электрическому оборудованию, работающему от трехфазной сети.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector