Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный двигатель своими руками

Сайт про изобретения своими руками

    alexlevchenko Posted on 21.08.2015Электронные самоделки,Это Интересно6 Comments

Представляю вам статью о том, как можно изготовить термоядерный реактор своими руками!

Но сначала несколько предупреждений:

Эта самоделка использует при своей работе опасное для жизни напряжение. Для начала убедитесь, что вы ознакомлены с правилами техники безопасности при работе с высоким напряжением или имеете квалифицированного друга – электрика в качестве советчика.

При работе реактора будут излучаться потенциально опасные уровни рентгеновских лучей. Свинцовое экранирование смотровых окон является обязательным!

Дейтерий, что будет использоваться в поделке – взрывоопасный газ. Поэтому особое внимание следует уделить проверке на герметичность топливного отсека.

При работе соблюдайте правила ТБ, не забывайте надевать спецодежду и средства индивидуальной защиты.

Список необходимых материалов:

  • Вакуумная камера;
  • Форвакуумный насос;
  • Диффузионный насос;
  • Блок питания высокого напряжения, способный выдавать 40 кВ 10 мА. Должна присутствовать отрицательная полярность;
  • Высоковольтный делитель – зонд, с возможностью подключения к цифровому мультиметру;
  • Термопара или баратрон;
  • Детектор нейтронного излучения;
  • Счётчик Гейгера;
  • Газ дейтерий;
  • Большой балластный резистор в диапазоне 50-100 кОм и длиной около 30 см;
  • Камера и телевизионный дисплей для отслеживания ситуации внутри реактора;
  • Стекло покрытое свинцом;
  • Инструменты общего плана (гравёр, дрель и т.д).

Ядерный двигатель: готовность № 1

Ядерный двигатель будет испытан на околоземной орбите уже в 2025 году. По результатам испытаний, технология ядерного ракетного двигателя (ЯРД) будет применена как в «мирном космосе», так и в военных разработках. Агентство США по перспективным оборонным исследовательским проектам (DARPA) выбрало три крупные космические компании для первой фазы крупного проекта по испытанию ядерного двигателя на низкой околоземной орбите к 2025 году.

Разработка и первые испытания ядерного ракетного двигателя

Данная технология не нова. Первые варианты были названы ядерными тепловыми ракетными двигателями (ЯТР). Они были разработаны в середине 1950-х годов еще до образования НАСА. Фактически, концепция ядерного двигателя для космических путешествий создавалась почти одновременно с Манхэттенским проектом по созданию атомной бомбы.

Британские ученые также работали над теорией атомных ракетных двигателей. В 1948 году, Британией был опубликован ряд работ, с выводом о том, что ядерные ракеты будут единственным способом проводить исследования в глубоком космосе.

Американский ядерный ракетный двигатель NERVA был разработан и сертифицирован к применению, однако в 1973 году его бесшумно поставили на полку. Американская программа NTR была закрыта (по крайней мере, официально) в 1973 году. К этому моменту был разработан полностью готовый и сертифицированный двигатель, названный NERVA (ядерный двигатель для применения в ракетных установках).

Советский Союз, со своей стороны, продолжил работу над ядерными двигателями. В 2010-2011 гг. в технических журналах сообщалось, что Россия фактически близка к завершению разработки рабочей конструкции ядерного двигателя и инвестируют значительные средства в проект ракеты на Марс, которая должна была быть готова в 2018 г. Однако этим планам также не суждено было свершиться.

Ядерный ракетный двигатель: принцип работы

На первый взгляд, эти двигатели выглядят слишком сложными. Однако, как и в случае с таким большим количеством технологий, основной принцип довольно прост. Ракеты всех типов работают за счет ускорения газообразного или жидкого вещества в одном направлении, заставляя двигатель двигаться в другом направлении. Это достигается с помощью сопла — для ускорения газового потока, генерируемого двигателем. Как правило, чем выше температура отработавших газов, тем больше скорость, при которой они выходят из сопла; чем больше скорость, тем больше тяга двигателя.

На схеме ниже, жидкий водород прокачивается вокруг очень горячей активной зоны реактора, которая нагревает его до экстремальных температур, а затем выбрасывается из сопла со скоростью до 10 км в секунду, приводя в движение двигатель и прикрепленный к нему корпус ракеты.

Ракетно-ядерные двигатели работают, имея в своей активной зоне небольшой ядерный реактор, который при активации генерирует чрезвычайно высокую температуру. Затем жидкости или газы различных типов проходят через активную зону и нагреваются почти до той же температуры — 20 000 градусов С, выходя из сопла со скоростью до 10 000 м/с.

Реальный показатель производительности называется «Specific Impulse»: обычный ракетный химический двигатель имеет импульс около 500 сек, а ядерная версия — 6 000 сек. Проще говоря, это означает, что ядерный ракетный двигатель может толкать космический корабль со скоростью, в шесть раз превышающей скорость существующих двигателей, сокращая, например, путь на Марс до приемлемых 80 дней или менее.

Опасность технологии ядерного ракетного двигателя

Если эти двигатели настолько эффективны, почему они не используются сегодня? Ну, проблемы — это смесь технологических сложностей, стоимости и опасностей, присущих выходу из строя двигателя.

Конструкции этих систем настолько сложны, что для их правильной работы требуется огромный объем технического анализа. Современные вычислительные системы все еще испытывают сильные нагрузки и нагревания, а высокие температуры все еще являются технической проблемой с точки зрения производительности материалов. Все это приводит к высоким затратам на разработку — намного большим, чем доказанные и «серийно производимые» обычные ракетные двигатели, доступные сегодня.

Опасность поломки двигателя всегда была очень велика. Взрыв атомного ракетного двигателя, это все равно что Чернобыльский воздушный взрыв, за исключением того, что в некоторых случаях площадь, пораженная радиоактивным материалом, может быть значительно больше. Даже без взрыва поломка двигателя может привести к образованию смертоносного облака или падению радиоактивных частиц на землю с ужасными последствиями для людей и экосистем, где бы они ни приземлялись.

Казалось бы сборка ракеты с подобной установкой прямо в космосе решает большинство рисков. На фото ниже изображен ядерный ракетный двигатель, собираемый в космосе перед дальним космическим полетом.

Читать еще:  Что такое всетопливный двигатель

Это поможет снизить риск огромного выброса радиоактивных материалов на уровне земли в случае отказа системы. Однако последствия выброса такого облака высоко над Землей по-прежнему вызывают большую озабоченность, поскольку мы не до конца понимаем, как и когда оно может вернуться на поверхность планеты.

Даже без учёта загрязнения окружающей среды, двигатель будет представлять собой высокорадиоактивный кусок металла, с минимальным экранированием для членов экипажа. Кроме того, рассмотрим вопрос о стыковке с космической станцией или что-то в этом роде: как защитить близлежащие сооружения и персонал от радиации? Как избавиться от отработанного ядра двигателя, кроме как «загоняя» отходы в космос?

Существует опасность того, что постепенно накопится массивное облако радиоактивных материалов, вращающееся вокруг Земли. В конечном счете оно упадет обратно на поверхность. Хотя некоторые из элементов имели бы короткий период полураспада, большая часть материала действительно была бы очень долгоживущей. Это может создать классический сценарий Судного дня. Планету, в какой-то момент станет непригодной для обитания.

Российская разработка ядерного двигателя и авария на полигоне «Нионокса» под Северодвинском

Согласно источникам, Россия пытается реализовать ряд проектов с использованием очень маленьких ядерных двигателей для ракет и даже торпед. Полученные в результате высокие скорости и увеличенная дальность действия ракет делают их очень подвижным и опасным оружием, способным обойти все существующие системы противоракетной обороны.

Торпеда или беспилотная подводная лодка также обладали бы скоростью и выносливостью, которые представляли бы весьма серьезную угрозу для всех действующих военно-морских оборонительных систем.

Однако некоторые факты указывают на весьма негативный опыт испытаний подобных систем. В марте 2018 года Путин объявил, что ракета 9М730 «Буревестник» (название НАТО «Скайфолл») является одним из шести новых стратегических оружий, разрабатываемых Россией.

9 августа, «российское агентство по атомной энергии «Росатом» подтвердило, что выброс радиации на полигон для испытаний ракеты «Нионокса» под Северодвинском был связан с аварией при испытании «изотопного источника питания жидкостного ракетного двигателя», в результате которой погибли восемь человек, в том числе пятеро ученых». (Источник: Википедия).

Рассказы об уровнях радиации разнятся, в некоторых официальных сообщениях говорится, что они оставались довольно высокими в течение нескольких часов. Уровни, опасности, связанные с ветром, еще не раскрыты в полной мере, поскольку крупный пожар и взрыв почти наверняка привели бы к тому, что большое облако такого материала было бы рассеяно в атмосфере.

Есть некоторые сообщения о том, что местных жителей попросили покинуть свои дома до проведения испытаний, но официальное агентство печати опровергло их. Тем не менее, очевидно, что взрыв заставил военных либо приостановить, либо отменить дальнейшие испытания, хотя это вполне может быть заявлением, направленным на успокоение как местных, так и международных опасений.

Россия утверждает, что ее работа над ядерными ракетными двигателями является самой передовой в мире. Однако запланированные Америкой на 2025 год испытания могут оспорить это утверждение.

США уверены в готовности ядерного ракетного двигателя к испытаниям 2025 года

Агентство по перспективным оборонным исследовательским проектам (DARPA) выбрало три крупные космические компании для первой фазы более крупного проекта по испытанию ядерного двигателя над низкой околоземной орбитой к 2025 году.

США заявили, что уверены в готовности ядерного ракетного двигателя к испытаниям до 2025 года. Три компании — General Atomics, Blue Origin и Lockheed Martin получили контракты на первую фазу программы DRACO (Демонстрационная ракета для маневренных операций). В то время как DARPA не раскрыла стоимость контракта в своем объявлении, СМИ Space News сообщили, что General Atomics получила $22 миллиона, Lockheed Martin — $2,9 миллиона и Blue Origin — $2,5 миллиона.

«Команды были отобраны в связи с их способностью разрабатывать и развертывать современные системы для реакторов, двигателей и космических аппаратов», говорится в заявлении DARPA. Агентство, в частности, подчеркнуло необходимость «быстрого маневра» для военных систем.

Первый этап программы включает в себя два направления, длительностью в 18 месяцев, каждое из которых проходит разными путями. Направление «А» включает в себя предварительный проект ядерного теплового энергетического реактора, а также двигательной подсистемы. На этапе «В» будет создана «концепция эксплуатационной системы космического аппарата» для решения будущих задач, включая демонстрационную систему.

Прежняя администрация НАСА также проявила интерес к потенциалу ядерных двигателей, особенно к сокращению времени, затрачиваемого при полёте на Марс, примерно до трех — четырех месяцев по сравнению с двигателями на химическом топливе. Агентство заявило, что надеется доставить астронавтов на Красную планету в 2030-х годах.

«Это абсолютно переломный момент для того, чего пытается достичь НАСА», — заявил бывший администратор НАСА Джим Брайденстин во время заседания Национального космического совета. «Это дает нам возможность по-настоящему защитить жизнь, когда мы говорим о дозе радиации, когда мы путешествуем между Землей и Марсом», — добавил он.

Реактор для дома

Судя по всему, в этот период у Дэвида сформировалось убеждение, что ядерный реактор необходим на случай исчерпания других источников энергии. Так он пришел к мысли собрать в домашних условиях настоящий реактор. К тому моменту лаборатория уже переехала в сарай у дома родной матери парня.

Читать еще:  Что такое прослушивание двигателя

Подросток замахнулся на реактор-размножитель. Если по-простому, такое устройство вырабатывает больше ядерного топлива, чем необходимо для его функционирования. На словах звучит хорошо, а на практике оказалось, что есть серьезные проблемы с надежностью и безопасностью: на одной станции реактор начал плавиться, на другой не работал должным образом.

Сперва парень решил сделать нейтронную пушку, которая сталкивала бы изотопы с нейтронами. Хан обратился за советами в исследовательские центры и институты. Дэвид представлялся учителем физики. Он написал в Комиссию по ядерному регулированию, Американское общество ядерной энергетики, Институт электричества имени Эдисона и другие организации. Парень расспрашивал о работе реактора и компонентах для его постройки. Адресаты подробно отвечали, ни разу не проверив его личность.

Ядерный реактор – дома с нуля

Некоторое время назад я публиковал статью о самодельных микропроцессорах, сегодня же мы затронем более сложную и щекотливую тему (особенно в свете событий на Фокусиме) – создание ядерного реактора, способного генерировать энергию в домашних условиях. И перед тем как вы начнете волноваться, вспоминая о негативных опытах в прошлом (см. Радиоактивный бойскаут – наковырявший прилично амерция-241 из детекторов дыма) заранее скажу, что все что описано в этой статье – относительно безопасно (по крайней мере не опаснее работы с фтороводородной кислотой дома), но крайне не рекомендуется к повторению. Перед любыми действиями проконсультируйтесь со своим адвокатом — законы разные в разных странах. Много кто уже сидит.

Какие у нас есть пути создания домашнего ядерного реактора?

Термоядерная реакция

Тяжелый водород (дейтрий) относительно несложно получить и в домашних условиях — всего то нужен многостадийный электролиз обычной воды. Но вот с реактором до сих проблемы даже у ученых, и не первый десяток лет (и это не учитывая, что дейтрий — далеко не самое легкое в использовании термоядерное топливо)

Ядерная реакция деления

В простейшем случае — нужен просто природный уран без обогащения и немного воды (хехе, «Просто добавь воды»: вода — и замедлитель, и отражатель нейтронов). Проблема в том, что надо этого добра сотни тонн, и за вами точно придет доктор, даже если вы 0.1 грамма попробуете найти / купить / унести.

Тут в унынии нам остается обратить взоры в небо, и посмотреть на чем летают межпланетные корабли — там просто кусок радиоактивного материала, который за счет естественного распада нагревается, и элементами пельтье получают энергию. (Кстати естественный распад — собственно главная физическая причина всех бед на Фокусиме — после остановки ядерного реактора в первые минуты за счет распада выделяется 7% номинальной мощности, в первые недели —

1%, затем падает до 0.1%. Т.е. от 700МВт реактора в первые недели надо отводить 7МВт тепла, и этот процесс не остановить)

Попробуем подумать в этом направлении: Есть 3 основных вида радиоактивного распада:

Гамма-распад

Источники гамма излучения широко используются в медицине и промышленности, в основном на основе Кобальта-60/Цезия-137 (печально известного по ядерным катастрофам). Проблема в том, что излучение их очень жесткое, крайне опасное, и от него и сантиметром свинца не защититься (см. веселое свечение Вавилова-Черенкова справа — выбитые гамма-квантами электроны, движущиеся в воде со сверхсветовой скоростью излучают энергию в видимом диапазоне). Так что обходим их стороной как можно дальше. Ну и кроме того, за нелегальную сбыт/покупку гамма-источников каждый год садится куча людей
PS. Справедливости ради стоит заметить, что гамма-квант в данных случаях выделяется не непосредственно, а в результате распада одного из дочерних короткоживущих элементов.

Альфа-распад

Источники альфа-излучения активно применяются в детекторах дыма, для облегчения зажигания искры, в некоторых радиолампах. Один из наиболее известных — упомянутый в начале Америций-241. От альфа-излучения легко защититься даже листком бумаги, но с ними другая опасность: они чрезвычайно опасны если их вдохнуть/проглотить. См. миф об отравлении Кровавой Гэбней Литвиненко. Кроме того, наковырять количества больше микрограммов нереально, потому о термоэлектрических генераторах придется забыть. А жаль — ведь на основе альфа-распада работают наиболее эффективные генераторы энергии. Самый лучший — Плутоний-238 (Не путать с 239) — отдает 0.5 Ватта тепла на 1 грамм массы, полураспад 87 лет (цена — 1 мегабакс за кило).

Бета-распад

Источники мягкого бета-излучения (в сущности, электроны/позитроны) умеренно хорошо экранируются, и обладают чертовски полезным качеством: при попадании электрона в люминофор можно вызвать его свечение. Ну и как побочный эффект — в большинстве стран мира «безопасные» бета-излучатели достаточно легальны. Чем и пользуются изготовители всяких светящихся брелков, как на первой фотографии. Пожалуй, на основе бэта-распада мы и будем строить свой ядерный реактор.

Читать еще:  Двигатель f4r троит рено

Основа нашего реактора — капсула с тритием, с небезызвестного сайта DealExtreme — www.dealextreme.com/p/mini-tritium-glowring-keychain-10-year-green-glow-6830. 9.7$. Формально радиоактивные материалы так просто почтой слать нельзя, но DealExtreme про это видимо не знает.

О безопасности

Мягкое бета-излучение за пределы капсулы выйти не может, гелий не радиоактивен. Проблема может быть лишь в случае повреждения капсулы. Если тритий вдохнуть — то заражение будет минимальным, т.к. водород напрямую организмом не усваивается. Но если он сгорит, то вода может стать частью клеток, и тогда вы получите всё облучение, которое может только выжать этот микроскопический кусочек трития. Так что, не ломайте, не сжигайте и не вдыхайте то что получилось.

Итак, Тритий — сверхтяжелый водород, период полураспада 12.32 года. На выходе имеем гелий и очень «мягкие» электроны — 6.5кЭв (+антинейтрино, для ценителей). Энергию будем собирать солнечной батареей, подавать на вход Step-Up стабилизатора MCP1640 — работает до десятых вольта на входе, на выходе — ионистор на 1 Фарад и 5В. В нашем случае нагрузкой будет красный светодиод.

Для того, чтобы собрать как можно больше света, нашу капсулу с тритием помещаем в отражатель из фольги.
Для фокусировки используем 2 линзы по 10 диоптрий, видна солнечная батарея до приклеивания, капсула не установлена.
Подключаем, выключаем свет, ждем минуту для первоначального заряда ионистора, и вот результат:

Первая электроэнергия, произведенная ядерным реактором, созданным в домашних условиях 🙂

Халява?

О нет 🙂 В среднем реактор выдает мощность около 7 милливатт (а через 12.32 года будет 3.5 ), и хоть для светодиода этого достаточно, ноутбук от него не зарядить ) Но с другой стороны, десяток таких модулей вполне сможет держать сотовый телефон в режиме ожидания пару десятков лет 🙂 Правда цена… Капсула стоит 9.7$, солнечная батарея 5$, линзы 13.8$*2 — уже 42$ за модуль. А за десяток придется отдать 420$… С другой стороны — на сайте есть капсулы побольше — но за 35.

Ловим гравитационную волну

Растягивание и изгиб пространства-времени можно использовать для космических путешествий

Несмотря на всю эффективность двигателей, нам все равно не удается превзойти скорость света. Чем ближе аппарат к световой скорости, тем больше энергии нужно для разгона. Где же взять бесконечный энергетический запас?

Наиболее причудливые методы предлагают искривление предела скорости света. То есть, можно растянуть пространство впереди корабля и собрать его сзади, как в научно-фантастических фильмах. Кораблю никогда не разрушить световую скорость, но в теории можно воспользоваться изгибом.

Проблема лишь в том, что для этого понадобится двигатель, состоящий из специальной материи – тип с отрицательной массой.

Другие разработки [ править | править код ]

В 1960-х годах США были на пути к Луне. Менее известным является тот факт, что в Зоне 25 (рядом со знаменитой Зоной 51) на полигоне Невады учёные работали над одним амбициозным проектом — полётом на Марс на ядерных двигателях. Проект был назван NERVA. Работая на полную мощность, ядерный двигатель должен был нагреваться до температуры в 2000 °C. В январе 1965 года были произведены испытания ядерного ракетного двигателя под кодовым названием «КИВИ» (KIWI).

В ноябре 2017 года Китайская корпорация аэрокосмической науки и техники (China Aerospace Science and Technology Corporation, CASC) опубликовала дорожную карту развития космической программы КНР на период 2017—2045 годы. Она предусматривает, в частности, создание многоразового корабля, работающего на ядерном ракетном двигателе [10] .

В феврале 2018 года появились сообщения о том, что НАСА возобновляет научно-исследовательские работы по ядерному ракетному двигателю [11] [12] [13] .

Стартер и ручки подачи топлива связаны механически. Стартер имеет выключатель, который подключает двигатель к источнику питания. Этот переключатель также может быть активирован рычагом управления подачей топлива, когда он находится в рабочем положении.

Пружина стартера должна быть нагружена таким образом, чтобы она хотела вернуться в нормальное положение, и блокировала стартовое положение только в том случае, если рычаг управления подачей топлива находится в отключенном положении.

Идея состоит в том, чтобы стартер оставался в исходном положении, пока вы не переместите рычаг подачи топлива в рабочее положение, и теперь рычаг управления подачей топлива будет держать переключатель включенным. Также топливный рычаг является частью основания реостата. Реостат должен быть установлен таким образом, чтобы можно было вращать не только часть ручки, которая должна вращаться, но и всю основу реостата. Эта база — то, что контроль топлива двигает для увеличения скорости, когда он находится в рабочем положении. Это сложно объяснить и поэтому, чтобы лучше понять концепцию, вы должны посмотреть третью часть видео.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector