Mio-tech-service.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный ракетный двигатель принцип работы

marafonec

Бег на месте к горизонту

Ядерная энергетическая установка для ракет и подводных аппаратов — как это работает

https://sozero.livejournal.com/2018/03/03/
Вчера, без всякого преувеличения, мы стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) — энергетики и транспорта вообще.
Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о которой говорил Путин. Что именно в ней является движителем? Откуда берётся тяга? Не за счёт же вылетающих из сопла нейтронов.

Когда узнал со слов коллеги о том, что у нас созданы ракеты с практически неограниченной дальностью полёта, обалдел. Показалось, он что-то упустил, а слово «неограниченной» было упомянуто в каком-то узком смысле.
Но информация, полученная затем из первоисточника, сомнений не вызывала. Звучала, напомню, она так:
«Одно из них – создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз – в десятки раз! – большую дальность полёта, которая является практически неограниченной.»
В услышанное невозможно было поверить, но не верить было нельзя — это сказал ОН. Включил мозг и тут же получил ответ. Да какой!
Ну, черти! Ну, гении! Нормальному человеку такое даже в голову не придёт!

Итак, до сих пор мы знали только о ядерных силовых установках для космических ракет. В космических ракетах обязательно есть вещество, которое, будучи разогретым или разогнанным ускорителем, питаемым ядерной силовой установкой, с силой выбрасывается из сопла ракеты и обеспечивает ей тягу.

Вещество при этом расходуется и время работы двигателя ограничено.

Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является «практически неограниченной»?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с «пропеллерами» (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать — слишком мала такая тяга. А это таки ракета, а не беспилотник.

Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги — взятие его из окружающего пространства.

Т.е., как бы это удивительно ни звучало, но новая ракета работает «на воздухе»!

В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета — крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.

Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания. Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.

Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью. Известная торпеда «Шквал», разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.

За малошумностью же стоит новый принцип движения. И он — тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Этому аппарату неплохо подошло бы название «Кальмар», потому что по сути это водомётный двигатель в «ядерном исполнении» 🙂

Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час. Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров. Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность — временное явление и объясняется тем, что морская вода высокой температуры — очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.

1. Поражает воображение фраза Путина:
«При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.»

Опять одни вопросы.
Как они этого добились? Какие конструкторские решения и технологии применены?

1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.
2. Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле — на столетия.
3. Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.
В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове — хоть стой, хоть падай! 🙂

Как это работает

Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.

1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.
2. Впускной клапан закрывается.
3. Воздух в камере нагревается.
4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.
5. Выпускной клапан закрывается.

Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.

P.S. Описанный выше механизм, повторю, — смысловой. Он дан по просьбе читателей для лучшего понимания того, как этот двигатель может вообще работать. В реальности, не исключено, реализован прямоточный двигатель. Главное в данной статье — не определение типа двигателя, а выявление вещества (набегающего воздуха), которое используется в качестве единственного рабочего тела, дающего тягу ракете.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва — думаю, этот вопрос решён, — а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в «камеру сгорания», а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Читать еще:  Что является кпд теплового двигателя

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.

Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30-50 лет.

1. Флот, в том числе гражданский, транспортный. Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.
2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.
3. Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.
4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.
5. Грузовые автомобили на электротяге. Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.

Это уже не говоря о наземном/мобильном использовании ядерных электроустановок. Одна беда — для работы таких малогабаритных ядерных реакторов требуются не уран/плутоний, а гораздо более дорогие радиоактивные элементы, наработка которых в ядерных же реакторах пока очень и очень дорога и требует времени. Но и эта задача может быть со временем решена.

Друзья, обозначена новая эра в сфере энергетики и транспорта. Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.

Примите мои поздравления.
Скучно не будет!

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны были взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием, и, потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции передавался кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно было уменьшить. При взлёте корабль должен был лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США были проведены несколько испытаний модели летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем.

Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Ядерная энергетическая установка для ракет и подводных аппаратов — как это работает

На днях, без всякого преувеличения, мы стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) — энергетики и транспорта вообще.

Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о которой говорил Путин. Что именно в ней является движителем? Откуда берётся тяга? Не за счёт же вылетающих из сопла нейтронов.

Когда узнал со слов коллеги о том, что у нас созданы ракеты с практически неограниченной дальностью полёта, обалдел. Показалось, он что-то упустил, а слово «неограниченной» было упомянуто в каком-то узком смысле.

Но информация, полученная затем из первоисточника, сомнений не вызывала. Звучала, напомню, она так:

Одно из них – создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз – в десятки раз! – большую дальность полёта, которая является практически неограниченной.

В услышанное невозможно было поверить, но не верить было нельзя — это сказал ОН. Включил мозг и тут же получил ответ. Да какой!

Ну, черти! Ну, гении! Нормальному человеку такое даже в голову не придёт!

Итак, до сих пор мы знали только о ядерных силовых установках для космических ракет. В космических ракетах обязательно есть вещество, которое, будучи разогретым или разогнанным ускорителем, питаемым ядерной силовой установкой, с силой выбрасывается из сопла ракеты и обеспечивает ей тягу.

Вещество при этом расходуется и время работы двигателя ограничено.

Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является «практически неограниченной»?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с «пропеллерами» (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать — слишком мала такая тяга. А это таки ракета, а не беспилотник.

Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги — взятие его из окружающего пространства.

Т.е., как бы это удивительно ни звучало, но новая ракета работает «на воздухе»!

В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета — крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.

Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания. Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.

Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью. Известная торпеда «Шквал», разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.

За малошумностью же стоит новый принцип движения. И он — тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Этому аппарату неплохо подошло бы название «Кальмар», потому что по сути это водомётный двигатель в «ядерном исполнении» 🙂

Читать еще:  Экстренная помощь запуск двигателя

Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час. Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров. Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность — временное явление и объясняется тем, что морская вода высокой температуры — очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.

1. Поражает воображение фраза Путина:

При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.

Опять одни вопросы.

Как они этого добились? Какие конструкторские решения и технологии применены?

1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.

2. Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле — на столетия.

3. Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.

В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове — хоть стой, хоть падай! 🙂

Как это работает

Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.

1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.

2. Впускной клапан закрывается.

3. Воздух в камере нагревается.

4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.

5. Выпускной клапан закрывается.

Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.

P.S. Описанный выше механизм, повторю, — смысловой. Он дан по просьбе читателей для лучшего понимания того, как этот двигатель может вообще работать. В реальности, не исключено, реализован прямоточный двигатель. Главное в данной статье — не определение типа двигателя, а выявление вещества (набегающего воздуха), которое используется в качестве единственного рабочего тела, дающего тягу ракете.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва — думаю, этот вопрос решён, — а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в «камеру сгорания», а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.

Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30-50 лет.

1. Флот, в том числе гражданский, транспортный. Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.

2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.

3. Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.

4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.

5. Грузовые автомобили на электротяге. Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.

Это уже не говоря о наземном/мобильном использовании ядерных электроустановок. Одна беда — для работы таких малогабаритных ядерных реакторов требуются не уран/плутоний, а гораздо более дорогие радиоактивные элементы, наработка которых в ядерных же реакторах пока очень и очень дорога и требует времени. Но и эта задача может быть со временем решена.

Друзья, обозначена новая эра в сфере энергетики и транспорта. Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.

Примите мои поздравления.
Скучно не будет!

Особенности ракеты Буревестник (SSC-X-9 Skyfall)

Ключевой особенностью российской крылатой ракеты 9М730 «Буревестник» (SSC-X-9 Skyfall) является использование ядерной силовой установки, которая позволяет ракете выполнять полёт практически неограниченное время и на неограниченных дистанциях, что делает данное вооружение уникальным.

Более того, крылатая ракета с ядерным двигателем «Буревестник» оборудована специальными системами, позволяющими ей маневрировать и обходить средства противоракетного перехвата противника, что, в свою очередь, делает её практически неуязвимой.

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлёте корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчёты, но и натурные испытания. Лётные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок. Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповреждёнными, тонкий слой графита испарился (аблировал) с их поверхностей.

Программа развития проекта «Орион» была рассчитана на 12 лет, расчётная стоимость — 24 миллиарда долларов, что было сопоставимо с запланированными расходами на лунную программу «Аполлон» («Apollo»). Интересно, что разработчики проводили предварительные расчёты постройки на базе этой технологии корабля поколений с массой до 40 млн тонн и экипажем до 20 000 человек [6] . Согласно их расчётам один из уменьшенных вариантов такого ядерно-импульсного звездолёта (массой 100 тыс. т) мог бы достичь Альфы Центавра за 130 лет, разогнавшись до скорости 10 000 км/с. [7] [8] Однако приоритеты изменились, и в 1965 году проект был закрыт.

Читать еще:  Электрический манометр давления масла двигателя

В СССР аналогичный проект разрабатывался в 1950—70-х годах [9] . Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30—40 км от поверхности Земли; затем предполагалось включать основной ядерно-импульсный двигатель. Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершён. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Русские координаты Skyfall: зачем РФ ракета «Буревестник»

Крылатая ракета неограниченной дальности с ядерным двигателем «Буревестник» готовится к очередным испытаниям. Аналогов в мире не существует, Россия продолжает лидировать в области революционных высокотехнологичных вооружений.

Александр Хроленко, военный обозреватель

На Новой Земле готовится к испытаниям ракетный комплекс «Буревестник» и, новый запуск может состояться в первом полугодии 2021 года. Географическая точка позволяет проверить ракету на большой дальности, изделие 9М730 давно «на ходу». По данным источника в российской ракетостроительной отрасли, полигонные испытания ядерной энергоустановки завершены в январе 2019 года, подтверждены рабочие характеристики реактора, обеспечивающие неограниченную дальность полета. Высокую активность в точке испытаний «Буревестника» на архипелаге Новая Земля с августа 2020 года фиксируют и опубликованные CNN спутниковые снимки.

Президент РФ Владимир Путин заявлял о первом успешном пуске новейшей ракеты с ядерной энергоустановкой еще в конце 2017 года. А японское издание The Diplomat со ссылкой на источники в американском правительстве сообщало, что «Буревестник» испытывали на полигоне «Капустин Яр» в Астраханской области с июня 2016 года. Выполнено более десяти пусков, и это технологическая революция (по классификации НАТО — SSC-X-9 Skyfall, можно перевести как «падение небес», «Разверзшиеся небеса»).

Невидимый для радаров «Буревестник» можно засечь лишь со спутника, и только в момент старта. Отследить и перехватить крылатую ракету в полете на высотах 50–100 метров практически невозможно. Неограниченная дальность и сверхмалые высоты «Буревестника» делают «прозрачными» и бесполезными все существующие и перспективные системы ПВО-ПРО развитых стран.

По оценкам специалистов, новейшая крылатая ракета «Буревестник» будет принята на вооружение не ранее 2027 года, и ее боевой потенциал не учитывается в продленном до 5 февраля 2026 года российско-американском Договоре о стратегических наступательных вооружениях (СНВ-3).

Уникальная конструкция

Традиционная крылатая ракета представляет собой боеголовку (обычную или ядерную) с реактивным двигателем, и ограниченным радиусом действия. К примеру, количество топлива на борту КР «Томагавк» позволяет пролететь до 2500 км. Ракета с ядерным двигателем способна, не оставляя следа, преодолеть десятки тысяч километров, много раз обогнуть планету в плотных слоях атмосферы.

Возможности «Буревестника» делают его оружием стратегического назначения. Применение обычных боеголовок «кругосветной» дальности нецелесообразно, хотя и возможно. Стратегические крылатые ракеты предназначены для уничтожения важных объектов противника с точными координатами. Для успешного поражения цели после длительного полета по сложной траектории, на сверхбольшую дальность «Буревестнику» необходима комбинированная система управления и самонаведения на основе спутниковой и инерциальной навигации, а также коррекцией полета по рельефу местности. Крылатая ракета с ядерным двигателем способна заходить на цель по любой траектории – без ограничений (в масштабах планеты), и оставаться в воздухе несколько суток или месяцев в угрожаемый период.

Из открытых источников известно, что «Буревестник» – крылатая ракета наземного базирования, имеет планер с фюзеляжем характерной формы и соплами прямоточного двигателя по бортам, высокорасположенное крыло. «Буревестник» похож на изделие Х-101, только заметно крупнее всех крылатых аналогов воздушного и морского базирования (около 10 метров в длину). Испытательные пуски «Буревестника» осуществлялись из транспортно-пусковых контейнеров, с наземной установки.

«Буревестник» – инструмент сдерживания, оружие возмездия. И фантастическая идея, которую удалось воплотить в металле и отправить в полет только России. Заметим, в США с середины прошлого века безуспешно пытались сделать нечто подобное (проекты Nuclear Energy for the Propulsion of Aircraft, Atomic Energy Commission, Aircraft Nuclear Propulsion).

Система безопасности

Неуловимый «Буревестник» устроен таким образом, что о его применении противник сможет узнать только в режиме онлайн, когда вдруг исчезнет один из крупных военных объектов или мегаполисов. Вероятный агрессор десять раз подумает, стоит ли «дергать медведя за усы». Таким образом, новая крылатая ракета сделает мир прочнее.

Вашингтон обеспокоен российскими перспективными системами вооружений стратегической дальности. И неслучайно новая администрация президента Джозефа Байдена столь оперативно пошла на продление Договора СНВ-3 (единственный действующий договор между РФ и США об ограничении вооружений), без каких-то невыполнимых условий. Мириться лучше со знакомым злом, а это лимитированные для каждой из сторон: 700 межконтинентальных баллистических ракет, баллистических ракет на подводных лодках и тяжелых бомбардировщиках, а также 1550 боеголовок, 800 развернутых и неразвернутых пусковых установок. На сегодня механизм контроля не разрушен, и это хорошо. В перспективе просматриваются разные варианты развития системы безопасности. Будущие соглашения РФ и США о стратегической стабильности могут охватить противоракетную оборону, высокоточные вооружения в неядерном оснащении, кибервооружения, и вооружения в космосе.

Глава комитета Госдумы РФ по обороне Владимир Шаманов 27 января заявил, что новые виды стратегических ядерных вооружений могут быть включены в Договор о мерах по дальнейшему сокращению и ограничению стратегических наступательных вооружений (СНВ-3) в ходе дальнейших переговоров. С другой стороны, военные эксперты считают, что Россия может «пожертвовать» гиперзвуковой системой «Авангард», но никогда не втиснет в договор все новейшее, гиперзвуковое и тактическое ядерное оружие. Как бы то ни было, в списке для «компромиссов» вряд ли когда-нибудь окажется «Буревестник».

Переоценивать продление Договора СНВ-3 не стоит, перспективы взаимоотношений Москвы и Вашингтона неоднозначны. Продлевая договор, американцы ничего не теряют, и в дальнейшем могут изменить свою позицию, оперативно выйти из СНВ-3 по пункту 3 статьи ХIV документа. Вашингтон официально в различных докладах и программах именует Россию военным противником и врагом Соединенных Штатов. Страны НАТО готовятся дать отпор неким «агрессивным действиям России», продолжают «игру без правил», которая, по мнению президента РФ Владимира Путина, «критически повышает риски одностороннего применения военной силы» и «умножает вероятность появления новых горячих точек на нашей планете». В этих неблагоприятных условиях порох надо держать сухим, а «Буревестники» и «Посейдоны» – готовыми к старту.

Работа атомной электростанции.

Если в двух словах, то рабобоа выглядит так.

Атомная электростанция. (Кликабельно)

После поступления в активную зону реактора с помощью насосов, вода нагревается с 250 до 300 градусов и выходит с “другой стороны” реактора. Это называется первым контуром. После чего направляется в теплобменник, где встречается со вторым контуром. После чего пар под давлением поступает на лопатки турбин. Турбины вырабатывают электричество.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector