Mio-tech-service.ru

Автомобильный журнал
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Материалы для изготовления поршней

Поршень

Поршень — деталь поршневой группы двигателя, находящаяся внутри цилиндра. При помощи шатуна поршень соединен с коленчатым валом. Конструкция спроектирована таким образом, что поршень во время работы двигателя постоянно совершает возвратно-поступательное движение, преобразуя энергию расширяющихся при сгорании газов во вращение коленчатого вала.

Конструкция и форма поршневых колец

Материалы для изготовления поршневых колец

Материалы для изготовления поршневых колец выбираются по наличию у них антифрикционных свойств и по условиям, при которых должны работать поршневые кольца. Хорошая эластичность и коррозионная стойкость важны точнотакже, как и высокая сопротивляемость по отношению к повреждениям при экстремальных условиях эксплуатации. Серый чугун является на сегодняшний день ещё основным материалом, из которого изготавливаются поршневые кольца. С трибологической точки зрения серый чугун, с содержащимся в его структуре прослойками графита, обладает отличными антифрикционными свойствами (сухое смазывание графитом).

Они важны особенно тогда, когда смазывание больше не обеспечивается моторным маслом или маслянистая плёнка уже разрушена. Кроме того, графитовые жилки в структуре кольца являются своеобразным масляным резервуаром и при неблагоприятных условиях эксплуатации мешают разрушению маслянистой плёнки.

В качестве разновидностей серого чугуна используются следующие материалы:

• Чугун с пластинчатой структурой графита (чугун с пластинчатым графитом), обогащённый и необогащённый.

• Чугун с глобулярной структурой графита (чугун с шаровидным графитом), обогащённый и необогащённый.

Процесс литья поршневых колец

В качестве стальных материалов используются хромистая сталь с мартенситной микроструктурой и пружинная сталь. Для повышения износостойкости поверхности колец подвергаются закалке. Это происходит, как правило, с помощью нитрирования*.

* Нитрирование обозначается на языке специалистов также, как азотирование (подача азота) и представляет собой метод для закалки стали. Нитрирование проводится, как правило, при температуре от 500 до 520 °С. Время обработки — от 1 до 100 ч. На поверхности детали благодаря прямой диффузии азота образуется очень твёрдый поверхностный слой межсоединений из нитрида железа. В зависимости от времени обработки он может достигать толщины в 10-30 мкм. Распротранёнными методами являются нитрирование в соляной ванне (например, коленчатых валов), газовое азотирование (поршневых колец) и нитрирование плазмой

Материалы для покрытия рабочей поверхности

На рабочие пояски или рабочие поверхности поршневых колец для улучшения трибологических* свойств можно наносить покрытие. При этом, прежде всего, на первом плане стоит повышение износостойкости и обеспечение смазывания и уплотнения в экстремальных условиях эксплуатации. Материал для покрытия должен гармонировать как с материалами, из которых изготовлены поршневое кольцо и стенка цилиндра, так и со смазкой. Использование покрытия рабочей поверхности у поршневых колец нашло широкое распространение. Часто кольца двигателей серийного производства имеют покрытие из хрома, молибдена и феррооксида.

Но используются также и кольца с CKS (слоями хрома — керамики) или с покрытием, нанесённым методом физического отделения из парообразной фазы (PVD = Physical Vapour Deposition). Нитрид титана (TiN) и азотистый хром (CrN) используются при более мелких сериях производства (прежде всего, у гоночных двигателей).

* Трибология (греч.: учение о трении) включает в себя исследования и технологию действующих изменений поверхностей, движущихся относительно друг друга. Эта наука занимается описанием трения, износа и смазывания.

Молибденирование

Во избежание следов пригара рабочая поверхность компрессионных колец (только не маслосъёмных колец) может быть наполнена молибденом или по всей поверхности им покрываться. Это может происходить как в процессе газопламенного, так и в процессе плазменного напыления. Молибден гарантирует из-за его высокой точки плавления (2620 °С) более высокую термостойкость. Кроме того, благодаря этому методу нанесения покрытия, можно получить пористую структуру материала. В возникающих из-за этого микропустотах на рабочей поверхности колец (рис. 2) может собираться моторное масло, которое гарантирует, что даже при экстремальных условиях эксплуатации ещё имеется достаточно смазки для рабочей поверхности кольца.

Свойства:

• Хорошие антифрикционные свойства.

• Более мягкий чем хром.

• Менее износостойкий чем хромовые кольца (более восприимчив к загрязнениям).

• Более восприимчив к вибрации поршневых колец (вследствие этого выбросы молибдена при экстремальных нагрузках, таких, как, напр., детонационное сгорание и др. сбои процесса сгорания).

Хромирование

Хромовое покрытие может наноситься как гальваническим методом, так и методом плазменного напыления. У маслосъёмных поршневых колец применяется гальваническое нанесение покрытия.

Свойства:

• Большой срок службы (износостойкость).

• Меньший износ цилиндров (примерно 50% по сравнению с кольцами без покрытия).

• Хорошая сопротивляемость по отношению к следам пригара.

• Антифрикционные свойства хуже чем при молибденировании.

• По причинехорошей износостойкости необходимо больше времени для приработки, чем у неармированных, маслосъёмных со стальными пластинками или U-образных пружинных маслосъёмных поршневых колец.

Виды покрытия рабочей поверхности кольца

Рис. 4 — Полностью с покрытием

Рис. 5 — Со вставкой с нанёсенным покрытием в рабочей поверхности кольца

Рис. 6 — Снеподной наружной оболочкой с одной стороны

Отслаивание покрытия

Время от времени происходит отслаивание напылённого молибденом и феррооксидом покрытия рабочей поверхности. Причиной этому являются в основном ошибки при монтаже поршневых колец (слишком сильное растягивание при надевании на поршень и натягивание колец, как показано на рисунке 1). При неправильном надевании колец на поршень покрытие разламывается только на спинке кольца (рис. 2). Если нанёсеное покрытие на стыковых концах отслаивается (рис. 3), то это указывает на вибрацию поршневого кольца из-за сбоя процесса сгорания (напр., детонационное сгорание).

Рис. 1

Рис. 2

Обработка рабочей поверхности (обтачивание, притирка, шлифование)

Рабочие поверхности поршневых колец из чугуна, как правило, подвергаются только тонкой обточке. Из-за небольшого времени приработки неармированных колец отказываются от обработки рабочей поверхности шлифованием или притиркой. Рабочие поверхности с нанесённым покрытием или подверженные закалке либо только шлифуются, либо притираются. Причина этого состоит в том, что благодаря хорошей износостойкости это длилось бы очень долго до тех пор, пока кольца приняли бы круглую форму и стали бы хорошо уплотнять. Результатом были бы потеря мощности и высокий расход масла.

Читать еще:  Основные типы поршней

Рис. 4

Выпуклая форма рабочей поверхности

Следующая причина для использования процесса шлифования или притирки это форма рабочей поверхности. Поршневые кольца прямоугольного сечения из-за движения вверх и вниз, а также из-за движения кольца в кольцевой канавке (скручивание кольца) принимают по прошествии некоторого времени на рабочей поверхности выпуклую форму (рис. 5 и 6). Это положительно отражается на образовании маслянистой плёнки и сроке службы колец.

Рис. 5

Рис. 1 — Симметричная выпуклость

Рис. 2 -Асимметричная выпуклость

Уже при производстве колец с нанесённым покрытием им придают несколько выпуклую форму. Вследствие этого они не должны получать определённую форму при приработке, а уже с самого начала имеют желаемую форму и уже предварительно приработанную рабочую поверхность. Благодаря этому нет не только повышеного износа от приработки, но и вместе с ним связанного расхода масла. Из-за точечного контакта рабочей поверхности кольца появляется более высокое специфическое давление прижима на стенку цилиндра и, вместе с этим, более хорошая герметизация от газа и масла. Также уменьшается опасность кромочного контакта, исходящая от ещё острых кромок кольца. У кольца из хрома есть и без того всегда перелом кромки для того, чтобы предотвратить продавливание масляной плёнки при приработке. Очень твёрдый хромовый слой при не очень удачной конструкции мог бы привести к значительному износу и к повреждению более мягкой стенки цилиндра.

Симметричные, выпуклые рабочие поверхности кольца (рис. 1), независимо от того, являются ли они результатом приработки или уже производства, обладают очень хорошими антифрикционными свойствами и создают определенную толщину маслянистой плёнки. При симметричной выпуклости толщина маслянистой плёнки при движении поршня вниз и вверх везде одинаковая. Силы, действующие на кольцо и позволяющие ему всплывать на масляной плёнке, в обоих направлениях равны.

Если выпуклость — уже результат производства кольца, то для лучшего контроля расхода масла существует возможность создать асимметричную выпуклость. Высшая точка выпуклости находится тогда не в середине рабочей поверхности, а немного ниже (рис. 2).

При движении кольца вверх оно хорошо скользит по масляной плёнке в направлении верхней мёртвой точки, так как образование масляного клина, благодаря большей действующей площади над вершиной выпуклости кольца больше, чем под ней (рис. 3). Скорее всего, кольцо выдавливается масляной плёнкой, а не наоборот. Это означает, что толщина маслянистой плёнки при движении вверх сильно не уменьшается. При движении кольца вниз (рис. 4), из-за меньшей действующей площади под вершиной его выпуклости оно не может так сильно планировать на масляной плёнке. Большее количество масла снимается и транспортируется обратно в кривошипную камеру. Вследствие этого, асимметрично выпуклые кольца служат также и для контроля расхода масла, особенно при неблагоприятных условиях эксплуатаци и в дизельных двигателях. Это случается, например, после более длительных фаз холостого хода, следующих за периодами полной нагрузки, при которой часто происходит выброс масла в выпускную систему и появляется голубой дым при повторном газовании.

Рис. 3

Обработка поверхности

В зависимости от конструкции поверхности поршневых колец могут быть либо без покрытия, либо фосфатированными, либо покрытыми медью. Это влияет лишь на антикоррозионные свойства колец. Кольца без покрытия, хоть они прекрасно и блестят пока новые, они, однако, совсем незащищены от появления ржавчины. Фосфатированные кольца имеют матово-чёрную поверхность и защищены слоем фосфата от появления ржавчины.

Покрытые медью кольца также хорошо защищены от ржавчины и имеют лёгкую защиту от образования следов пригара, образующегося во время приработки. Медь обладает определённым эффектом сухой смазки и, вследствие этого, минимально выраженными антифрикционными свойствами при приработке.

На работу колец обработка поверхности, тем не менее, не влияет. Таким образом, качество поршневого кольца не зависит от его цвета.

Анатомия поршневых колец

Не следует думать, что для всех колец из комплекта применяется один и тот же металл. На применяемый материал основное влияние оказывает расположение поршневых колец на поршне. Поскольку все поршневые кольца работают в разных условиях, то и требования, предъявляемые к сплавам, из которых они изготовлены, различны.

Первое компрессионное кольцо

В наиболее тяжелых условиях находятся первые компрессионные кольца, поэтому к ним предъявляются наиболее высокие требования по жаростойкости и сопротивляемости износу. Чаще всего их изготавливают из чугуна с противоизносной вставкой из молибдена.

На первый взгляд все компрессионные кольца выглядят одинаково, однако их конфигурация может существенно различаться. Например, верхнее может быть немного перекручено. В результате с поверхностью цилиндра контактирует только его кромка, а не вся поверхность. Благодаря этому, уменьшаются потери на трение, и сокращается время приработки.

Другой тип – компрессионные кольца с L-образным участком. Их отличительная особенность – способность менять степень уплотнения в зависимости от давления, оказываемого рабочими газами на тыльную часть большого L-образного выступа. Под давлением они расширяются, улучшая компрессию (во время такта сжатия), когда давление уменьшается, диаметр наоборот, уменьшается, при этом уменьшается трение и износ деталей. Какие из колец лучше, каждый решает сам, поскольку у всех имеются свои преимущества.

Второе компрессионное кольцо

Условия его работы менее напряженные, поэтому требования, предъявляемые к материалу, из которого оно изготовлено, менее жесткие. Второе компрессионное кольцо выполняет двойную задачу:

  1. обеспечивает дополнительное уплотнение, задерживая газы, прорвавшиеся через первое;
  2. работает наподобие скребка, препятствуя попаданию моторного масла в камеру сгорания.

Нередко вторые компрессионные кольца имеют форму усеченного конуса, т.е. диаметр верхней части меньше, чем диаметр нижней. Благодаря такой конструкции, при движении поршня вниз со стенок цилиндра удаляется масло.

Оба компрессионных кольца имеют только одно правильное положение для установки, переворачивать их ни в коем случае нельзя, иначе они будут неправильно работать. Для предотвращения ошибок при монтаже на их верхней стороне ставится маркировка, например, «Т» или «TOP».

Читать еще:  Самостоятельная замена поршня: особенности

Маслосъемные кольца

Они устанавливаются под компрессионными. В отличие от последних, их поверхность не сплошная, она имеет окошки, предназначенные для отвода моторного масла. В современных двигателях маслосъемные кольца устанавливаются по одному на каждый поршень, раньше они устанавливались по несколько, особенно в двигателях, предназначенных для стационарного использования.

Чтобы облегчить выбор покрытия для поршней, мы составили рейтинг наиболее известных материалов.

MODENGY Для деталей ДВС

MODENGY Для деталей ДВС

Это единственное покрытие для деталей ДВС в аэрозольном баллоне, которое отверждается при комнатной температуре (методом воздушной сушки). Содержит дисульфид молибдена высокой степени очистки и графит. Диапазон рабочих температур от -70 до +260 °C.

Антифрикционное твердосмазочное покрытие (АТСП) MODENGY Для деталей ДВС предназначено для нанесения на юбки поршней бензиновых и дизельных двигателей, коренных подшипников коленвала, втулок, распредвалов в ДВС. Подходит также для восстановления зазора в дроссельной заслонке, шлицевых, резьбовых соединений и других пар трения металл-металл в двигателе.

Состав обладает высокой несущей способностью, отличными противозадирными свойствами, длительным сроком службы. Он не разрушается под воздействием моторного масла, эффективно снижает потери на трение и предотвращает скачкообразное движение.

Высочайшие эксплуатационные характеристики покрытия MODENGY Для деталей ДВС уже оценили крупнейшие автозаводы, на которых оно используется при массовом производстве поршней. Пример – в следующем видеоролике.

Покрытие MODENGY имеет очень удобную аэрозольную фасовку в баллоны с точно настроенными параметрами распыления. Работа с ними не требует особых навыков и дополнительного оборудования, что позволяет использовать АТСП в бытовых условиях.

Один баллон вмещает 210 мл средства. Этого количества хватает на 1 м 2 площади поверхности. На юбке поршня покрытие выглядит эстетично, слой имеет одинаковую толщину, потеки отсутствуют (см. фото ниже).

Несомненным преимуществом АТСП MODENGY Для деталей ДВС является простая технология его нанесения и сушки: покрытие легко распыляется из баллона и способно отверждаться на воздухе при комнатной температуре.

Подобные составы других производителей не имеют аэрозольных фасовок и высыхают только при нагреве в печах, поэтому для работы с ними требуются сложное оборудование и специальные навыки.

Фасовки

  • Металлический баллон 210 мл

Molykote D-10-GBL

Molykote D-10-GBL

Антифрикционное покрытие с графитом и полиамид-имидным связующим, отверждаемое при нагреве. Диапазон рабочих температур от -40 до +340 °C.

Molykote D-10-GBL используется для поршней двигателей и зубчатых зацеплений автомобильной техники, в тяжелонагруженных узлах трения скольжения промышленного оборудования: в поршнях компрессоров, пневматических и гидравлических приводов, насосов, в подшипниках скольжения нефтедобывающего оборудования.

Данное АФП может также применяться в качестве антикоррозионного токопроводящего покрытия в бытовой технике, в качестве антиаварийной смазки узлов, покрытых маслом или иным смазочным материалом.

Molykote D-10-GBL препятствует заеданию, схватыванию и скачкообразному движению поверхностей трения, предупреждает их абразивный износ вследствие проникновения пыли. Покрытие не смывается водой, не разрушается под воздействием химически агрессивных сред, исключает частое повторное нанесение.

Ниже — реальное фото поршня с нанесенным на него покрытием Molykote.

Molykote D-10-GBL обладает хорошими эксплуатационными характеристиками, однако предназначено в целом для промышленного применения. Использование данного покрытия в частной практике ограничено его фасовкой и методами нанесения. В виде аэрозоля состав не выпускается, консистенция «жидкой сметаны» позволяет наносить его только одним способом — трафаретной печатью. Отверждается данное АФП только при нагреве в печи.

Таким образом, потребность в специальном оборудовании и навыках, а также высокая цена Molykote D-10-GBL не позволяет ему стать лидером рейтинга.

Фасовки

  • Банка 1 кг, ведро 5 кг

МС 2000

МС 2000

Суспензия дисульфида молибдена на полимерной основе, отверждаемая при нагреве. Диапазон рабочих температур от -50 до +200 °C.

Покрытие МС 2000 предназначено для нанесения на юбки поршней ДВС, вал-втулочные подшипники скольжения, направляющие скольжения, закрытые и открытые зубчатые передачи, цепные передачи. Подходит для резьбовых, шлицевых, шпоночных соединений и регулировочных клиньев.

По заверению производителя данный состав предотвращает схватывание, повышает плавность работы деталей, защищает их от износа и коррозии. В качестве методов нанесения покрытия названы практически все, включая ручной (кистью) и распыление.

Для нанесения из краскопульта материал, который имеет довольно густую консистенцию, нуждается в разбавлении растворителем или техническим изопропиловым спиртом. Однако пропорций производитель не указывает, поэтому метод распыления применить не получится.

Мы попробовали нанести МС 2000 на поверхность юбки поршня кистью. В результате получили покрытие очень низкого качества: слой неравномерной толщины, с наплывами и неоднородной структурой. Реальное фото смотрите ниже.

Поршень, покрытый МС 2000, использовать не рекомендуется, однако более качественно нанести состав не представляется возможным.

С сушкой МС 2000 также справится не каждый: сложная многоступенчатая операция с использованием печи, большого количества времени и особых навыков во многих случаях невозможна.

Опытным путем доказано, что данный состав имеет плохую адгезию, что не оправдывает усилий, необходимых для его нанесения и полимеризации.

При всех прочих недостатках МС 2000 имеет очень маленькую фасовку (объем 20 грамм).

Эксперимент «Гараж 54»

К эксперименту с поршнями, изготовленными из дерева, серьёзно подошли на канале «Гараж 54». Изначально стояла задача собрать и завести четырёхтактный двигатель внутреннего сгорания с деревянными поршнями. Разработчики разобрали двигатель, выточили поршни из бруска ясеня. Дополнительной обработке готовые детали не подвергали. На поршни поставили только два кольца, причём от маслосъёмных отказались.

Во время эксперимента возникли проблемы при сборке поршневой группы. В момент запрессовки пальцев деревянные детали лопались. Когда с этой проблемой разобрались, возникла новая — в двигателе пропала компрессия. Чтобы её решить, пришлось залить масло прямо в цилиндры. Но и это не помогло. После разборки оказалось, что залегли кольца. Пришлось расширять посадочное место.

В итоге двигатель всё-таки собрали, но завести машину с помощью стартера не удалось. Результат дал старый проверенный способ — буксир. Таскали машину достаточно долго. В конце концов она завелась, но работала недолго. Разборка двигателя показала, что ясеневые поршни прогорели полностью, проработав от силы 15-20 секунд.

Читать еще:  Основное назначение поршня

Этот эксперимент доказывает невозможность использования подобных деталей в двигателях, и разговоры об их применении — всего лишь слухи.

Поршень подразделяется на три части, выполняющие различные функции

  • днище
  • уплотняющая часть
  • направляющая часть (юбка)

Для передачи усилия от поршня (или наоборот) может использоваться шток, либо кривошип, который соединяется с поршнем с помощью пальца. Другие способы передачи усилия используются реже. В некоторых случаях шток может играть роль направляющего устройства, в этом случае юбка не нужна.

Поршень может быть односторонним или двухсторонним. В последнем случае поршень имеет два днища.

Днище

Форма днища зависит от выполняемой поршнем функции. К примеру, в двигателях внутреннего сгорания форма зависит от расположения свечей, форсунок, клапанов, конструкции двигателя и других факторов. При вогнутой форме днища образуется наиболее рациональная камера сгорания, но в ней более интенсивно происходит отложение нагара. При выпуклой форме днища увеличивается прочность поршня, но ухудшается форма камеры сгорания. В некоторых двухтактных двигателях днище поршня выполняется в виде выступа-отражателя для направленного движения продуктов сгорания при продувке. Расстояние от днища поршня до канавки первого компрессионного кольца называют огневым поясом поршня. В зависимости от материала, из которого сделан поршень, огневой пояс имеет минимально допустимую высоту, уменьшение которой может привести к прогару поршня вдоль наружной стенки, а также разрушению посадочного места верхнего компрессионного кольца.

Функции уплотнения, выполняемые поршневой группой, имеют большое значение для нормальной работы поршневых двигателей. О техническом состоянии двигателя судят по уплотняющей способности поршневой группы. Например, в автомобильных двигателях не допускается, чтобы расход масла из-за угара его вследствие избыточного проникновения (подсоса) в камеру сгорания превышал 3% от расхода топлива. При выгорании масла наблюдается повышенная дымность отработавших газов и двигатели снимаются с эксплуатации вне зависимости от удовлетворительности мощностных и других его показателей. [azbukadvs.ru/tehinfo/57-piston.html]

Уплотняющая часть

Днище и уплотняющая часть образуют головку поршня. В уплотняющей части поршня располагаются компрессионные и маслосъёмные кольца. В некоторых конструкциях поршней из алюминиевых сплавов в его головку залит ободок из коррозионностойкого чугуна (нирезиста), в котором прорезана канавка для верхнего наиболее нагруженного компрессионного кольца. Нирезистовую вставку под верхнее поршневое кольцо имеют, в частности, поршни двигателей, выпускаемых ТМЗ (Тутаевский моторный завод). Благодаря этому значительно увеличивается износостойкость поршня. Кольцевые каналы для маслосъемных колец выполняются со сквозными отверстиями, через которые масло, снятое с зеркала цилиндра, поступает внутрь поршня и стекает в поддон картера двигателя.

Направляющая часть

Юбка поршня (тронк) является его направляющей частью при движении в цилиндре и имеет два прилива (бобышки) для установки поршневого пальца. Так как масса поршня у приливов оказывается большей, чем в других частях юбки, температурные деформации при нагреве в плоскости бобышек также будут наибольшими. Для снижения температурных напряжений поршня с двух сторон, где расположены бобышки, с поверхности юбки, удаляют металл на глубину 0,5-1,5 мм. Эти углубления, улучшающие смазывание поршня в цилиндре и препятствующие образованию задиров от температурных деформаций, называются «холодильниками». В нижней части юбки также может располагаться маслосъемное кольцо.

Что такое цилиндр и поршень?

Современные двигатели могут иметь от 2 до 16 цилиндров, которые объединены в блок цилиндров. От количества цилиндров зависит мощность ДВС.

Внутренняя часть цилиндра является его рабочей поверхностью и называется гильзой, а внешняя, которая составляет единое целое с корпусом блока – рубашкой. По каналам рубашки циркулирует охлаждающая жидкость.

Внутри цилиндра совершает возвратно-поступательное движение поршень. Он передает энергию давления газов на шатун коленвала, герметизирует камеру сгорания и отводит из нее тепло. Состоит поршень из днища (головки), уплотняющих колец и направляющей части (юбки).

Поршни для бензиновых двигателей имеют плоское днище. Они меньше нагреваются при работе и проще в изготовлении. Они могут обладать специальными канавками, которые способствуют полному открытию клапанов. В дизельных двигателях поршни имеют специальную выемку заданной формы на дне. Она служит для того, чтобы воздух, поступающий в цилиндр, лучше смешивался с топливом.

Плотность соединения поршня и цилиндра обеспечивают поршневые кольца. Их расположение и количество зависит от типа и назначения двигателя. Наиболее часто встречающееся исполнение – одно маслосъемное и два компрессионных кольца.

Компрессионные кольца предотвращают попадание газов в картер двигателя из камеры сгорания и отводят тепло к стенкам цилиндра от головки поршня. По форме они бывают коническими, бочкообразными и трапециевидными.

Верхнее компрессионное кольцо изнашивается быстрее других, поэтому его наружная поверхность подвергается напылению молибдена или пористому хромированию. Благодаря такой подготовке первое кольцо становится более износостойким и лучше удерживает моторное масло. Другие уплотняющие кольца покрываются слоем олова для улучшения приработки к цилиндрам.

Маслосъемное кольцо служит для удаления излишков масла со стенок цилиндра, тем самым предотвращая их попадание в камеру сгорания. Через специальные отверстия в стенках поршня масло попадает внутрь последнего, а затем направляется в картер.

Направляющая часть (юбка) поршня может быть конусообразной или бочкообразной. Такая конструкция позволяет компенсировать расширение при воздействии высоких температур. На юбке находится отверстие с двумя бобышками, где крепится поршневой палец трубчатой формы, соединяющий поршень с шатуном.

Палец поршня может устанавливаться следующим образом:

  • Свободный ход в бобышках поршня и головке шатуна (плавающие пальцы)
  • Вращение в бобышках поршня и фиксация в головке шатуна
  • Вращение в головке шатуна и фиксация в бобышках поршня

Шатун соединяет поршень с коленвалом. Его верхняя головка движется возвратно-поступательно, а нижняя вращается совместно с шатунной шейкой коленчатого вала, стержень совершает сложное колебательное движение. При работе шатун подвергается растяжению, изгибу и сжатию, поэтому его производят жестким и прочным, а, чтобы уменьшить инерционные силы – легким.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты