Mio-tech-service.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные типы поршней

Типы поршней

  • обеспечивает передачу механических усилий на шатун;
  • отвечает за герметизацию камеры сгорания топлива;
  • обеспечивает своевременный отвод избытка тепла из камеры сгорания

Работа поршня проходит в сложных и во многом опасных условиях – при повышенных температурных режимах и усиленных нагрузках, поэтому особенно важно, чтобы поршни для двигателей отличались эффективностью, надежностью и износостойкостью. Именно поэтому для их производства используются легкие, но сверхпрочные материалы – термостойкие алюминиевые или стальные сплавы. Поршни изготавливаются двумя методами – литьем или штамповкой.

Типы поршней

В двигателях внутреннего сгорания применяется два типа поршней, различающихся по конструктивному устройству – цельные и составные.

Цельные детали изготавливаются путем литья с последующей механической обработкой. В процессе литья из металла создается заготовка, которой придается общая форма детали. Далее на металлообрабатывающих станках в полученной заготовке обрабатываются рабочие поверхности, нарезаются канавки под кольца, проделываются технологические отверстия и углубления.

В составных элементах головка и юбка разделены, и в единую конструкцию они собираются в процессе установки на двигатель. Причем сборка в одну деталь осуществляется при соединении поршня с шатуном. Для этого, помимо отверстий под палец в юбке, на головке имеются специальные проушины.

Достоинство составных поршней — возможность комбинирования материалов изготовления, что повышает эксплуатационные качества детали.

Из каких металлов изготавливаются поршни двигателя?

Все современные поршни двигателя изготовлены из алюминиевого сплава. Сплав ведет себя несколько иначе при использовании в зависимости от того, как изготовлен поршень, поэтому важно понимание процесса производства. До 1970-х годов тема литых и кованых поршней часто обсуждалась; с тех пор, достижения в области технологий сделали дебаты практически ненужными для повседневного водителя.

Материал Поршня Эволюция

В оригинальных двигателях внутреннего сгорания для изготовления поршней использовалась сталь. Алюминиевый сплав вступил во владение очень рано. Самые ранние алюминиевые поршни подвергались значительному расширению и сжатию из-за нагрева, и конструкция была разработана таким образом, чтобы стальные кольца – так называемые распорки – были отлиты в стенах, чтобы уменьшить проблему. Этот тип поршня был распространен до 1960-х годов, когда введение кремния в сплав сделало амортизацию избыточной. Большинство современных поршней изготавливаются с содержанием силикона около 25 процентов. Ранний алюминиево-силиконовый сплав был известен своей хрупкостью; случайное падение с высоты скамейки обычно приводило к появлению трещины, которая в лучшем случае была дорогой, а в худшем – невозможной для ремонта. Добавление никеля в сплав снижает хрупкость, но увеличивает отношение массы к массе.

Поршень Дизайн

Поршни имеют девять частей и секций. Вершина поршня должным образом называется венцом; ниже этого находятся кольцевые канавки, в которые установлены поршневые кольца. Поднятые области между кольцевыми канавками называются землями. Ниже кольца в сборе находится отверстие для поршневого пальца. Поршневой палец, называемый в промышленности «наручным пальцем», проходит через это отверстие и проходит через шатун. Вокруг поршневого пальца расположены выступы, которые поддерживают его концы. Нижняя часть поршня называется юбкой.

Литые поршни

Литой поршень отлит из расплавленного алюминиевого сплава, который втягивается вакуумом в стальные штампы; только минимальная обработка необходима, чтобы закончить полученный поршень. Процесс называется «гравитационное литье под давлением». Форма и толщина стенок полностью контролируются, но процесс стоит дорого.

Кованые поршни

Кованый поршень изготавливают вначале, помещая слиток из нагретого алюминиевого сплава в охватывающую форму; После этого в пресс-форму вынуждают поршня-самца штамповать металл в поршневую заготовку. Затем заготовка подвергается многим операциям обработки; Одна установка для ковки обычно производит заготовку, которая может быть обработана для поршней различных размеров, подходящих для самых разных автомобилей.

Сравнения

Литье было оригинальным методом изготовления поршней; ковка появилась позже как альтернатива. Процесс ковки сжимает молекулы сплава в венце, делая металл более плотным и, следовательно, способным противостоять экстремальным температурам. Это существенное преимущество, потому что заводная головка подвергается большему количеству тепла, чем любая другая часть двигателя, кроме свечи зажигания.

Практическое применение

Литые поршни выполнены в матрицах сложной формы, которые определяют их форму как внутри, так и снаружи; это позволяет получить равномерную и постоянную толщину стенки, которая сводит массу поршня к минимуму. Процесс установки штампов является дорогостоящим, поэтому литые поршни, как правило, изготавливаются только для нескольких применений и соответствуют огромным производственным требованиям. Кованые поршни после штамповки имеют сравнительно грубую внутреннюю форму, определяемую только плунжером, который вбивают в слиток, а затем втягивают. Это обычно означает, что требуется значительный поворот и ручная обработка. С помощью этого метода достигаются более жесткие допуски. По этим причинам рабочие поршни почти всегда кованые, а поршни OEM-спецификации отлиты.

Читать еще:  Как устроен поршень автомобиля?

Статьи по теме:

  • Части поршневого двигателя
  • Как освободить застрявшие поршневые кольца
  • Движущиеся части двигателя
  • Причины обдува дизельного двигателя
  • Типы металлов для прицепов
  • Какие поршни использовать с турбо



Материалы изготовления

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

КОНСТРУКЦИЯ

Устройство детали включает в себя три составляющие:

  1. Днище.
  2. Уплотняющая часть.
  3. Юбка.

Указанные составляющие имеются как в цельнолитых поршнях (самый распространенный вариант), так и в составных деталях.

ДНИЩЕ

Днище — основная рабочая поверхность, поскольку она, стенки гильзы и головка блока формируют камеру сгорания, в которой и происходит сжигание топливной смеси.

Главный параметр днища — форма, которая зависит от типа двигателя внутреннего сгорания (ДВС) и его конструктивных особенностей.

В двухтактных двигателях применяются поршни, у которых днище сферической формы – выступ днища, это повышает эффективность наполнения камеры сгорания смесью и отвод отработанных газов.

В четырехтактных бензиновых моторах днище плоское или вогнутое. Дополнительно на поверхности проделываются технические углубления – выемки под клапанные тарелки (устраняют вероятность столкновения поршня с клапаном), углубления для улучшения смесеобразования.

В дизельных моторах углубления в днище наиболее габаритны и имеют разную форму. Такие выемки называются поршневой камерой сгорания и предназначены они для создания завихрений при подаче воздуха и топлива в цилиндр, чтобы обеспечить лучшее смешивание.

Уплотняющая часть предназначена для установки специальных колец (компрессионных и маслосъемных), задача которых — устранять зазор между поршнем и стенкой гильзы, препятствуя прорыву рабочих газов в подпоршневое пространство и смазки – в камеру сгорания (эти факторы снижают КПД мотора). Это обеспечивает отвод тепла от поршня к гильзе.

УПЛОТНЯЮЩАЯ ЧАСТЬ

Уплотняющая часть включает в себя проточки в цилиндрической поверхности поршня — канавки, расположенные за днищем, и перемычки между канавками. В двухтактных двигателях в проточки дополнительно помещены специальные вставки, в которые упираются замки колец. Эти вставки необходимы для исключения вероятности проворачивания колец и попадания их замков во впускные и выпускные окна, что может стать причиной их разрушения.

Перемычка от кромки днища и до первого кольца именуется жаровым поясом. Этот пояс воспринимает на себя наибольшее температурное воздействие, поэтому высота его подбирается, исходя из рабочих условий, создаваемых внутри камеры сгорания, и материала изготовления поршня.

Число канавок, проделанных на уплотняющей части, соответствует количеству поршневых колец (а их может использоваться 2 — 6). Наиболее же распространена конструкция с тремя кольцами — двумя компрессионными и одним маслосъемным.

В канавке под маслосъемное кольцо проделываются отверстия для стека масла, которое снимается кольцом со стенки гильзы.

Вместе с днищем уплотнительная часть формирует головку поршня.

Юбка выполняет роль направляющей для поршня, не давая ему изменить положение относительно цилиндра и обеспечивая только возвратно-поступательное движение детали. Благодаря этой составляющей осуществляется подвижное соединение поршня с шатуном.

Для соединения в юбке проделаны отверстия для установки поршневого пальца. Чтобы повысить прочность в месте контакта пальца, с внутренней стороны юбки изготовлены специальные массивные наплывы, именуемые бобышками.

Для фиксации поршневого пальца в поршне в установочных отверстиях под него предусмотрены проточки для стопорных колец.

Что такое поршень двигателя? Основное назначение

Что такое поршень двигателя?

Поршень двигателя — это деталь цилиндрической формы, совершающая возвратно-поступательное движение внутри цилиндра и служащая для превращения изменения давления газа, пара или жидкости в механическую работу, или наоборот — возвратно-поступательного движения в изменение давления.

Насколько хорошо поршни двигателя справляется с возложенными обязанностями — зависят его эффективность и надежность. В силу множества функций и противоречивости свойств поршень превращается в одну из самых сложных и наукоемких деталей мотора. Такое положение подтверждается тем, что редкие автомобилестроительные компании проектируют и изготавливают их самостоятельно для своих моторов.

Читать еще:  Материалы для изготовления поршней

Многообразие форм и размеров поршней является одной из причин, почему много тайн и секретов распространяется вокруг этого причудливой формы куска металла.

Требования к поршням двигателя

Во-первых, поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Следовательно, он должен сопротивляться высокой температуре, давлению газов и надежно уплотнять канал цилиндра.

Во-вторых, представляя собой вместе с цилиндром и поршневыми кольцами линейный подшипник скольжения, он должен наилучшим образом отвечать требованиям пары трения с целью минимизировать механические потери и, как следствие, износ.

В-третьих, испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, он должен выдерживать механическое воздействие.

В-четвертых, совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.

Основное назначение поршней в работе двигателя

Топливо, сгорая в надпоршневом пространстве, выделяет огромное количество тепла в каждом цикле работы двигателя. Температура сгоревших газов достигает 2000 градусов. Только часть своей энергии они передадут движущимся деталям мотора, все остальное в виде тепла нагреет двигатель, а то, что останется, вместе с отработанными газами улетит в трубу. Следовательно, если мы не будем охлаждать поршень, он через некоторое время расплавится. Это важный момент для понимания условий работы поршневой группы.

Еще раз повторим известный факт, что тепловой поток направлен от более нагретых тел к менее нагретым. Тогда мы сможем увидеть распределение температур по поршню во время его работы и определить важные конструктивные моменты, влияющие на его температуру, т. е. понять, за счет чего он охлаждается.

Наиболее нагретым является рабочее тело, или, другими словами, газы в камере сгорания. Совершенно понятно, что тепло будет передано окружающему воздуху – самому холодному. Воздух, омывая радиатор и корпус двигателя, остудит охлаждающую жидкость, блок цилиндров и корпус головки. Остается найти мостик, по которому поршень отдает свое тепло в блок и антифриз. Есть для этого четыре пути.

Итак, первый путь, обеспечивающий наибольший поток, – это поршневые кольца. Причем первое кольцо играет главную роль, как расположенное ближе к днищу. Это наиболее короткий путь к охлаждающей жидкости через стенку цилиндра. Кольца одновременно прижаты и к поршневым канавкам, и к стенке цилиндра. Они обеспечивают более 50% теплового потока.

Второй путь менее очевиден. Вторая охлаждающая жидкость в двигателе – масло. Имея непосредственный доступ к наиболее нагретым местам мотора, масляный туман уносит с собой и отдает в поддон картера значительную часть тепла именно от самых горячих точек. В случае применения масляных форсунок, направляющих струю на внутреннюю поверхность днища поршня, доля масла в теплообмене может достигать 30 – 40%. Понятно, что, нагружая масло в большей степени функцией теплоносителя, мы должны позаботиться, чтобы его остудить. Иначе перегретое масло может потерять свои свойства. Также, чем выше температура масла, тем меньше тепла оно способно перенести через себя.

Третий путь – через массивные бобышки в палец, затем в шатун, а оттуда в масло. Он менее интересен, так как на пути есть существенные тепловые сопротивления в виде зазоров и стальных деталей, имеющих значительную протяженность и низкий коэффициент теплопроводности.

Четвертый путь. Часть тепла отбирает на свой нагрев свежая топливовоздушная смесь, поступившая в цилиндр. Количество свежей смеси и количество тепла, которое она отберет, зависит от режима работы и степени открытия дросселя. Надо заметить, что тепло, полученное при сгорании, также пропорционально заряду. Поэтому этот путь охлаждения носит импульсный характер, отличается скоротечностью и высокоэффективен благодаря тому, что тепло отбирается с той стороны, с которой поршень нагревается.

В силу большей значимости следует уделить более пристальное внимание передаче тепла через поршневые кольца. Совершенно понятно, что если этот путь мы перекроем, то маловероятно, что двигатель выдержит сколько-нибудь длительные форсированные режимы. Температура вырастет, материал поршня «поплывет», и двигатель разрушится.

Тут хочу упомянуть такую характеристику, как компрессия. Давайте представим, что кольцо не прилегает по всей своей длине к стенке цилиндра. Тогда сгоревшие газы, прорываясь в щель, создадут барьер, препятствующий передаче тепла от поршня через кольцо в стенку цилиндра. Это то же самое, как если бы мы закрыли часть радиатора и лишили его возможности охлаждаться воздухом.

Более страшна картина, если кольцо не имеет тесного контакта с канавкой. В тех местах, где газы имеют возможность протекать мимо кольца через канавку, участок поршня лишается принципиальной возможности охлаждаться и, даже более того, оказывается в «тепловом мешке». Как результат – прогар и выкрашивание части огневого пояса, прилегающей к месту утечки. Поэтому всегда уделяется много внимания геометрии цилиндра, кольца и износу канавки.

Читать еще:  Материалы для изготовления поршней

Сколько колец будет у нового поршня? С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. Однако при уменьшении их количества и высоты мы неизбежно ухудшаем условия охлаждения поршня, увеличивая тепловое сопротивление днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс.

Нужно одновременно, чтобы кольца были и узкие и широкие. И два для быстроходности и три для эффективного охлаждения поршня. Разрешение этой задачи – суть компетентность конструктора.

Нагрев

Как было упомянуто, в процессе работы двигателя поршни могут разогреваться до 250-450 °С. Поэтому необходимо принимать меры, направленные как на снижение нагрева, так и на компенсацию вызываемого им температурного расширения деталей.

Для охлаждения поршней используют масло, которое различными способами подают внутрь них: создают масляный туман в цилиндре, разбрызгивают его через отверстие в шатуне либо форсункой, впрыскивают в кольцевой канал, обеспечивают циркуляцию по трубчатому змеевику в днище поршня.

Для компенсации температурных деформаций на участках приливов юбки с двух сторон обтачивают металл на 0,5-1,5 мм в глубину в виде П- или Т-образных прорезей . Такая мера улучшает ее смазывание и предотвращает появлени е от температурных деформаций задиров, поэтому данны е углубления называют холодильниками. Их используют в сочетании с конусо- или бочкообразной формой юбки. Это компенсирует ее линейное расширение за счет того, что при нагреве юбка принимает цилиндрическую форму. Кроме того, используют компенсационные вставки , чтобы диаметр поршня испытывал ограниченное теплово е расширени е в плоскости качания шатуна. Также можно изолировать направляющую часть от головки, испытывающей наибольший нагрев. Наконец, стенкам юбки придают пружинящие свойства путем нанесения косого разреза по всей ее длине.

Покрытия поршней

Необходимость покрытий зависит от того, насколько экстремальны эксплуатационные режимы. Чем выше форсировка двигателя, тем необходимость эта выше. Потери на трение могут составлять более лошадиной силы, вызывают чрезмерный износ и повышают температуру деталей мотора. Особенно ощутим нагрев на юбке поршня и в отверстии поршневого пальца. Покрытия, предотвращающие износ, удлиняют жизнь поршня. Сегодня, во многих серийных моторах применяют поршни с графито-дисульфидно-молибденовым покрытием на юбке поршня, уменьшающим сопротивление трения, большинство изготовителей поршней на вторичном рынке также предлагают некоторый тип покрытых поршней, предназначенных в качестве замены стоковых изделий при ремонте и тюнинге.

Но не только с трением призваны бороться покрытия на изделиях. В процессе работы мотора желательно чтобы высокая температура в камере сгорания как можно меньше передавалась поршню. Горячий раскаленный поршень –источник для самовоспламенения смеси и детонации. Кроме того, высокая температура меняет твердость материала, что снижает ходимость поршней не только из-за повышенного износа, но и может вызвать их разрушение из-за теплового коробления. Керамико-металлические покрытия короны поршня — тип покрытий, работающих как тепловой барьер. Удержание высокой температуры в камере сгорания повышает тепловую эффективность и дает больше мощности. Это также помогает поршню не нагреваться сверх меры. Правда, слишком большая температура в камере сгорания также увеличивает риск детонации и самовоспламенения. Когда поршни с подобными покрытиями установлены на моторах, угол опережения зажигания обычно уменьшают на несколько градусов.

Конструкция поршня

Образование нагарных отложений на нижней поверхности днища поршня, утяжеляющих его, совсем нежелательно. Особенно активен процесс образования таких излишеств при устройстве масляных форсунок охлаждеиия. Специальные поршневые покрытия могут уменьшить время, которое масло проводит на основании поршня, а значит и возможность создания масляной «кулинарии». Анодирование компрессионной кольцевой канавки, как способ борьбы с привариванием кольца к материалу поршня под действием высокой температуры, используется во многих серийных моделях современных двигателей. Но это покрытие, толщиной около 20 микрон не всесильно, анодированный поршень может потерпеть неудачу, раскалившись сверх меры. Некоторые производители не серийной продукции вместо анодирования применяют вставки из никелевых сплавов в кольцевой канавке. Необходимость конструктивных особенностей крайне трудно просчитать, основываясь только на цифрах. Поэтому при выборе поршней лучше обратиться к тем, кто может дать совет на основании опыта эксплуатации. И уже по списку. составленному мастером. определится с предпочтениями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector